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Recent years have witnessed growing interest in deploying wireless sensing applications in

real-world environments. For example, home automation systems provide fine-grained me-

tering and control of home appliances in residential settings. Similarly, assisted living ap-

plications employ wireless sensors to provide continuous health and wellness monitoring in

homes. However, real deployments of Wireless Sensor Networks (WSNs) pose significant

challenges due to their low-power radios and uncontrolled ambient environments. Our em-

pirical study in over 15 real-world apartments shows that low-power WSNs based on the

IEEE 802.15.4 standard are highly susceptible to external interference beyond user control,

such as Wi-Fi access points, Bluetooth peripherals, cordless phones, and numerous other

devices prevalent in residential environments that share the unlicensed 2.4 GHz ISM band

with IEEE 802.15.4 radios.

To address these real-world challenges, we developed two practical wireless network protocols

including the Adaptive and Robust Channel Hopping (ARCH) protocol and the Adaptive
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Energy Detection Protocol (AEDP). ARCH enhances network reliability through oppor-

tunistically changing radio’s frequency to avoid interference and environmental noise and

AEDP reduces false wakeups in noisy wireless environments by dynamically adjusting the

wakeup threshold of low-power radios.

Another major trend in WSNs is the convergence with smart phones. To deal with the dy-

namic wireless conditions and varying application requirements of mobile users, we developed

the Self-Adapting MAC Layer (SAML) to support adaptive communication between smart

phones and wireless sensors. SAML dynamically selects and switches Medium Access Control

protocols to accommodate changes in ambient conditions and application requirements.

Compared with the residential and personal wireless systems, industrial applications pose

unique challenges due to their critical demands on reliability and real-time performance.

We developed an experimental testbed by realizing key network mechanisms of industrial

Wireless Sensor and Actuator Networks (WSANs) and conducted an empirical study that

revealed the limitations and potential enhancements of those mechanisms. Our study shows

that graph routing is more resilient to interference and its backup routes may be heavily

used in noisy environments, which demonstrate the necessity of path diversity for reliable

WSANs. Our study also suggests that combining channel diversity with retransmission may

effectively reduce the burstiness of transmission failures and judicious allocation of multiple

transmissions in a shared slot can effectively improve network capacity without significantly

impacting reliability.
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Chapter 1

Introduction

Recent years have witnessed growing interest in deploying wireless sensing applications in
real-world environments. For example, home automation systems provide fine-grained meter-
ing and control of home appliances in residential settings. Similarly, assisted living applica-
tions employ wireless sensors to provide continuous health and wellness monitoring in homes.
However, real deployments of Wireless Sensor Networks (WSNs) pose significant challenges
due to their low-power radios and uncontrolled ambient environments. We performed two
in-depth empirical studies on wireless channels in real-world residential environments, pro-
viding key design guidelines for meeting the reliable wireless communication constraints of
residential sensing applications. The spectrum study analyzes spectrum usage in the 2.4 GHz
band where WSNs based on the IEEE 802.15.4 standard must coexist with existing wireless
devices. We characterize the ambient wireless environment in six apartments through pas-
sive spectrum analysis across the entire 2.4 GHz band over seven days in each apartment.
The multi-channel link study measures the reliability of different 802.15.4 channels through
active probing with motes in ten apartments. The empirical studies show that low-power
WSNs based on the IEEE 802.15.4 standard are highly susceptible to external interference
beyond user control, such as Wi-Fi access points, Bluetooth peripherals, cordless phones,
and numerous other devices prevalent in residential environments that share the unlicensed
2.4 GHz ISM band with IEEE 802.15.4 radios [104] [106] [101].

To address these real-world challenges, we developed two practical wireless network protocols
including the Adaptive and Robust Channel Hopping (ARCH) protocol [103] and the Adap-
tive Energy Detection Protocol (AEDP) [105]. ARCH enhances network reliability through
channel diversity: devices opportunistically change their radio’s frequency in order to avoid
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adverse channel conditions such as interference and environmental noise. ARCH has several
key features. First, ARCH is an adaptive protocol that channel-hops based on changes in
channel quality observed in real time. Second, ARCH is a distributed protocol that selects
channels on a per-link basis, due to the large link-to-link variations in channel quality ob-
served under empirical study. Third, ARCH is designed to be robust and lightweight. ARCH
uses a practical handshaking approach to handle channel desynchronization and an efficient
sliding-window scheme that does not involve expensive calculations or modeling, and can be
reasonably implemented on memory-constrained wireless sensor platforms. Fourth, ARCH
introduces minimal communication overhead for applications where packet acknowledge-
ments are already enabled. We evaluate our approach through real deployment in real-life
apartments with residents’ daily activity. Our experimental results demonstrate that ARCH
can effectively reduce packet retransmissions and improve delivery rate on the unreliable
links with relatively few channel hops per day.

Low Power Listening (LPL) is a common Medium Access Control (MAC) layer technique
for reducing energy consumption in WSNs, where nodes periodically wake up to sample the
wireless channel to detect activity. However, LPL is highly susceptible to false wakeups
caused by environmental noise being detected as activity on the channel, causing nodes to
spuriously wake up in order to receive nonexistent transmissions. In our empirical studies in
residential environments, we observe that the false wakeup problem can significantly increase
a node’s duty cycle, compromising the benefit of LPL. We also find that the energy-level
threshold used by the Clear Channel Assessment (CCA) mechanism to detect channel activity
has a significant impact on the false wakeup rate. We then design AEDP, an adaptive energy
detection protocol for LPL, which dynamically adjust a node’s CCA threshold to meet
application-specified bounds on network reliability and duty cycle. Empirical experiments in
both controlled tests and real-world environments show that AEDP can effectively mitigate
the impact of noise on radio duty cycles, while maintaining satisfactory link reliability.

The other major trend in WSNs is the convergence with smart phones. To deal with the
dynamic wireless conditions and varying application requirements of mobile users, we de-
veloped the Self-Adapting MAC Layer (SAML) [102] to support adaptive communication
between smart phones and wireless sensors. SAML dynamically selects and switches MAC
protocols to changes in ambient conditions and application requirements. SAML comprises
(1) a Reconfigurable MAC Architecture (RMA) that can switch to different MAC protocols
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at run time and (2) a learning-based MAC Selection Engine that selects the protocol most
suitable for the current condition and requirements. To the application SAML appears as a
traditional MAC layer and realizes its benefits through a simple API for the mobile applica-
tions. We have implemented SAML in TinyOS 2.x and built three prototypes containing up
to five MACs. We evaluate the system in controlled tests and real-world environments using
a new gateway device that integrates a 802.15.4 radio with Android phones. Our experi-
mental results show that SAML can effectively adapt MAC layer behavior to meet varying
application requirements in dynamic environments through judicious selection and efficient
switching of MAC protocols.

Compared with the residential and personal wireless systems, industrial applications such
as process automation pose unique challenges due to their critical demands on reliability
and real-time performance. We developed an experimental testbed by realizing key net-
work mechanisms of industrial Wireless Sensor-Actuator Networks (WSANs) including multi-
channel TDMA with shared slots at the MAC layer and reliable graph routing. We then
performed an in-depth empirical study on the reliability, latency, and energy consumption of
variant solutions under clean, noisy, and stress testing conditions, providing key insights for
meeting the reliable and real-time constraints of industrial applications. Our study shows
that graph routing is more resilient to interference and its backup routes may be heavily
used in noisy environments, which demonstrate the necessity of path diversity for reliable
WSANs. Our study also suggests that combining channel diversity with retransmission may
effectively reduce the burstiness of transmission failures and judicious allocation of multiple
transmissions in a shared slot can effectively improve network capacity without significantly
impacting reliability.

The rest of the dissertation is organized as follows. Chapter 2 introduces our empirical
studies on wireless channels in real-world residential environments. Chapter 3 presents our
ARCH protocol and Chapter 4 shows our AEDP protocol. Chapter 5 discusses our design
of SAML and Chapter 6 presents our experimental testbed of industrial WSANs and our
empirical study. Chapter 7 concludes this dissertation.
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Chapter 2

Empirical Studies of Home-Area Sensor
Networks

2.1 Introduction

In recent years, there has been growing interest in various wireless sensing applications in
residential environments. For example, smart energy systems provide fine-grained metering
and control of home appliances in residential settings. Similarly, assisted living applications
such as vital sign monitoring and fall detection leverage wireless sensors to provide con-
tinuous health monitoring in homes. Wireless sensor networks offer a promising platform
for home automation applications because they do not require a fixed wired infrastructure.
Hence, home area networks (HANs) based on wireless sensor network technology can be used
to easily and inexpensively retrofit existing apartments and households without the need to
run dedicated cabling for communication and power 1 [50]. HAN applications have increas-
ingly adopted the IEEE 802.15.4 wireless personal area network standard to provide wireless
communication among sensors and actuators. 802.15.4 radios are designed to operate at a
low data rate and be inexpensively manufactured, making them a good fit for residential
applications where energy consumption and manufacturing costs are often at a premium.
Industry standards such as ZigBee Smart Energy have adopted 802.15.4 technology for use
in residential automation applications. The IETF has promoted efforts to standardize IPv6
on top of 802.15.4 for integrating wireless sensors into the Internet.

1Previous study shows that power becomes a scarce resource once the number of sensors exceeded the
number of 120V wall sockets in each home (typically 20-30). Furthermore, wall-powered nodes were 2.3x
more likely to lose power than battery-powered nodes [50]
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Figure 2.1: Histogram over 7 days’ raw energy traces. X axis indicates 802.15.4 channels, Y
axis indicates power, and color indicates how often a signal was detected at x GHz with an
energy level of y dBm.

However, HANs pose unique challenges in wireless communication due to their low-power
radios and uncontrolled residential environments. HANs typically feature low data rates
but require high network reliability in uncontrolled residential environments. Our study
shows that low-power IEEE 802.15.4 channels are highly susceptible to external interference
beyond user control, such as Wi-Fi access points, Bluetooth peripherals, cordless phones,
and numerous other devices prevalent in residential environments that share the unlicensed
2.4 GHz ISM band with IEEE 802.15.4 radios.

Figure 2.1 illustrates this challenge with raw spectrum usage traces collected from the 2.4
GHz spectrum in six apartments and an office building (described in more detail in Sec-
tion 2.3). The office environment provides a relatively clean and predictable wireless envi-
ronment, with only two major sources of noise: a campus-wide 802.11g network in the middle
of the spectrum, and a 802.15.4 sensor network testbed at the upper end. In contrast, the
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residential settings present a much noisier and more varied environment; for example, apart-
ments 4 and 5 show sporadic interference across the entire 2.4 GHz spectrum (represented
by blue shapes spanning nearly the entire X axis) which could complicate finding a persis-
tently reliable communication channel. These results highlight a fundamental challenge of
residential deployments: while the wireless devices in industrial and office settings are typ-
ically centrally managed, resulting in more predictable noise patterns, residential settings
present numerous sources of environmental noise due to a lack of spectrum management.
This challenge is compounded by the fact that wireless signals may traverse multiple neigh-
boring residences, subjecting neighbors’ networks to interference beyond their control. For
example, in just one apartment in our dataset, a deployed laptop was able to decode beacons
from 28 distinct Wi-Fi access points.

In this chapter, we present a two-part empirical study which aims to characterize the real-
world network performance of HANs, focusing specifically on devices based on the 802.15.4
standard. Our study is divided into two major parts. First, we carry out an analysis over
spectrum analyzer traces collected in six apartments. This spectrum study of ambient wire-
less conditions in homes illustrates the challenge of finding a “clean” part of the shared 2.4
GHz spectrum in such settings. Our analysis demonstrates that the wireless environments
in these apartments are much more crowded and more variable than an office setting. More-
over, while 802.11 WLANs contribute a significant fraction of the spectrum usage, we also
identified signals across the 2.4 GHz band indicating non-negligible noise from non-802.11
devices.

Second, we explore how these challenging environments may directly affect applications’
QoS, through an active probing study of wireless link reliability across all 16 channels in ten
apartments. This second study focuses on packet reception ratio (PRR), which is both a
direct indicator of link reliability and closely related to other important QoS metrics such
as latency and energy consumption. From this active study, we make several more key
observations which could greatly impact the QoS of wireless sensor networks deployed in
residential environments: (1) Link reliability varies significantly from channel to channel
and over time. (2) In a typical apartment environment, there may not be a single channel
which is persistently reliable for 24 hours. (3) Retransmissions alone are insufficient for
HANs due to the burstiness of packet losses. (4) Exploiting channel diversity by occasional
channel hopping at runtime can effectively maintain long-term reliable communication. (5)
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Channel conditions are not cyclic. (6) Reliability is strongly correlated across adjacent
channels; channel-hopping should move as far away as possible from a failing channel. (7)
Increasing transmission power may be effective for maintaining channel reliability, but is
potentially expensive. Combining channel diversity with transmission power control is a
promising strategy for controlling energy consumption while maintaining network reliability.

These findings reveal the characteristics of wireless channels and 2.4 GHz spectrum in resi-
dential environment, highlight the importance of channel diversity in managing HANs, and
provide ground truth and findings as a foundation for developing reliable wireless communi-
cation approaches for HANs. For example, it highlights the importance of dynamic channel
selection in managing HANs. Devices cannot be deployed with a factory-set default channel
as no channel can consistently achieve long-term reliability in all the apartments we studied.
Neither will a channel selected based on measurements at deployment time suffice either
because of the time-varying nature of channel conditions. On the other hand, sustained
reliability can be achieved by changing the channel only a few times a day. This observation
motivates the design of HAN management tools with dynamic channel management func-
tions that are not typically needed in Wi-Fi network management. Our study also provides
insights for managing the co-existence of HANs with other wireless technology such as Wi-Fi.
While co-existence of HANs and Wi-Fi has received attention in the literature [70], we found
that other devices can also be non-negligible sources of interference. Therefore, co-existence
solutions tailored specifically for Wi-Fi may not be effective in all residential environments.
Instead, general solutions agonistic to specific co-existing wireless technology will be more
effective in residential environments with diverse sources of interference.

The rest of the chapter is organized as follows. Section 2.2 reviews related work. Section 2.3
discusses the findings of our passive spectral study. Section 2.4 then presents our active
probing study. Finally, we conclude in Section 2.5 by highlighting the implications of our
findings on HAN design.

2.2 Related Work

Several recent studies have aimed to characterize the impact of interference on wireless net-
works through controlled experiments [51, 60, 110, 112, 134]. [89, 111, 127] present theoretical
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analysis based on simulation study. Gummadi et al. [43] presents an empirical study on
the impact of ZigBee and other interferers’ impact on 802.11 links, proposing to alleviate
interference with rapid channel-hopping in conjunction with 802.11b’s existing support for
Direct-Sequence Spread Spectrum (DSSS). Srinivasan et al. [115] examines the packet de-
livery behavior of two 802.15.4-based mote platforms, including the impact of interference
from 802.11 and Bluetooth. Liang et al. [70] measures the impact of interference from 802.11
networks on 802.15.4 links, proposing the use of redundant headers and forward error cor-
rection to alleviate packet corruption. In contrast to these controlled studies, our own study
examines the performance of HANs subject to normal residential activities and diverse inter-
ference sources. Due to the co-existence of diverse interference sources in these uncontrolled
environments, our study considers ambient wireless conditions as a whole, rather than ana-
lyzing specific sources of interference. For example, our spectrum study showed that, while
Wi-Fi is a significant source of interference in residential environments, non-Wi-Fi devices
can also be non-negligible sources of interference. This result indicates that solutions tai-
lored specifically for one type of co-existing wireless technology may not be effective in all
residential environments.

Bahl et al. [14] presents a study of UHF white space networking, while Chen et al. [26]
presents a large-scale spectrum measurement study followed by a 2-dimensional frequent
pattern mining algorithm for channel prediction. These studies focus on supporting wide-
area networks based on white space networking and the GSM band, respectively. Our own
study focuses on the reliability of static, indoor wireless sensor networks designed for home
environments, and on the unlicensed 2.4 GHz band used by IEEE 802.15.4 and shared by
other wireless devices prevalent in residential environments. Accordingly, our study provides
new insights into the reliability of HANs, including the high variability of residential wireless
environments, the lack of persistently reliable wireless channels, the diverse sources of inter-
ference (including the non-negligible impact of non-Wi-Fi devices), and the effectiveness of
occasional channel hopping in maintaining link reliability.

Papagiannaki et al. [85] performed an empirical study of home networks based on 802.11
technology. Our study considers devices based on the 802.15.4 standard, which operate
at a much lower transmission power than 802.11 devices and hence are significantly more
susceptible to interference. Our study therefore leads to a different set of observations that
underscores the impact of spectrum usage on these low-power 802.15.4 networks.
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Ortiz et al. evaluates the multi-channel behavior of 802.15.4 networks in a machine room, a
computer room, and an office testbed. Ortiz’s study finds path diversity to be an effective
strategy to ensure reliability. Our own study in residential environments provides many
different insights on low wireless characteristics compared with what is observed in Ortiz’s
study. The residential settings in our study exhibit more complex noise patterns and higher
variability than the environments studied by Ortiz. This difference may be attributed to
homes being open environments with no centralized control on spectrum usage; many 2.4
GHz devices are used in homes, and the physical proximity of some residences means that
strong interferers (such as 802.11 APs, Bluetooth devices, and cordless phones) may even
affect the wireless conditions in other homes. Accordingly, our active study in Section IV finds
exploiting channel diversity to be an attractive strategy for ensuring reliability in residential
environments. We note that channel and path diversity are orthogonal strategies; the two
could be used together in particularly challenging wireless environments.

Hauer et al. [47] discusses a multi-channel measurement of Body Area Networks (BANs) and
proposes a noise floor-triggered channel hopping scheme to detect and mitigate the effects
of interference. Hauer’s study features controlled indoor experiments along with outdoor
experiments carried out during normal urban activity. Shah el al. [108] performed a controlled
experiment to study the effect of the human body on BANs. Shah’s study measures the effects
of various activities (sitting, standing, and walking) and node placements (ear, chest, waist,
knee, and ankle) on 802.15.4 radio performance. Instead of body-area networks, our own
study focuses on HANs designed for smart energy, which feature significantly different setups
and wireless properties. Moreover, our study is performed under normal home activities,
providing a realistic setting to evaluate HAN performance.

2.3 Wireless Spectrum Study

In this section, we present a study of the ambient wireless conditions in real-world residential
environments. For this study, we collected 7 days’ energy traces in the 2.4 GHz spectrum
from six apartments in different neighborhoods. A detailed description of the experimental
settings may be found in Table 2.1.
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Name Begin Date End Date
Apt. 1 2:00pm, Apr. 4, 2010 3:30pm, Apr. 19, 2010
Apt. 2 6:50pm, June 30, 2010 6:50pm, July 7, 2010
Apt. 3 9:05pm, May 12, 2010 11:29pm, May 20, 2010
Apt. 4 11:40am, June 6, 2010 12:40pm, June 13, 2010
Apt. 5 12:25pm, Apr. 20, 2010 10:50am, Apr. 28, 2010
Apt. 6 7:00pm, July 7, 2010 9:00pm, July 14, 2010
Office 1:15pm, July 16, 2010 1:20pm, July 23, 2010

Table 2.1: The settings and dates where the spectrum data was collected.

As a baseline for comparison, we also collected energy traces from an office in Bryan Hall
at Washington University in St. Louis. We note that this baseline is meant to illustrate
how controlled testbed settings within an office environment may potentially be very dif-
ferent from real home environments; it is not meant to be a comprehensive study of office
environments.

Specifically, this study addresses the following questions. (1) Is there a common area of the
2.4 GHz spectrum which is free in all apartments? (2) Does spectrum usage change with
time? (3) Do residential settings have similar spectrum usage properties as office settings?
(4) Is Channel Occupancy Temporally Correlated? (5) Is 802.11 the dominant interferer in
residential environments?

2.3.1 Experimental Methodology

We are primarily interested in the spectrum usage between 2.400 GHz and 2.495 GHz, which
are the parts of the spectrum used by the 802.15.4 standard for wireless sensor networks.
To analyze this part of the spectrum, we collected energy traces using a laptop equipped
with a Wi-Spy 2.4x spectrum analyzer [1]. The Wi-Spy sweeps across the 2.4 GHz spectrum
approximately once every 40 ms, returning a signal strength reading (in dBm) for each of 254
discrete frequencies. We continuously collected energy traces for 7 days in each apartment
during the residents’ normal daily activities, as well as in an office in Bryan Hall. The
resulting traces contained 15,120,000 readings for each of the 254 frequencies, resulting in a
data set of approximately 2.5 GB per location. Figure 2.1 presents a histogram of the raw
spectrum usage data in all seven datasets.
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Figure 2.2: Channel occupancy rate. X axis designates channels, Y axis designates ex-
perimental settings, and color represents the proportion of readings above the occupancy
threshold.

For the purposes of analysis, we apply a thresholding process like that employed in [26] to
convert signal strength readings into binary values, with 0 denoting a channel being idle and
1 denoting a channel being busy. We found experimentally that a receive signal strength of
−80 dBm is needed to create a high-quality link between a pair of Chipcon CC2420 radios;
however, a noise level of −85 dBm or higher would be enough to induce packet drops on
such a link [106]. Hence, throughout our analysis, we use −85 dBm as our threshold value
to denote a busy channel. Using a constant threshold allows for a fair comparison across
different apartments. While the specific numerical results of our analysis are dependent on
the threshold, the trends and observations we make from these results should generally apply
to other threshold values.

To assess the impact of ambient wireless signals on HANs, we aggregate the data from the
Wi-Spy’s 254 channels into the 16 channels used by the 802.15.4 standard; i.e., an 802.15.4
channel is deemed busy if any of its corresponding Wi-Spy channels are busy.

2.3.2 Is There a Common Idle Channel in Different Homes?

We first considered whether any 802.15.4 channel can be considered “clean” in all the tested
residences. If such a channel exists, it could be used as a default, factory preset channel for
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HANs. For example, channel 26 is often assumed as a good default channel, because it does
not overlap with the spectrum used by 802.11 in North America.

To determine this, we calculate the channel occupancy rate — i.e., the proportion of samples
that exceeded the −85 dBm threshold — over all channels in the six apartments and the
office building. High occupancy rates correspond to a large proportion of samples where
interference could have caused packet loss on an otherwise high-quality link.

Figure 2.2 plots the occupancy rate of each channel in each location. If we compare Fig-
ures 2.1 and 2.2, we can note various phenomena that prevent finding a common idle channel.
For example, apartment 5 has a channel occupancy rate above 95% for 15 of its 16 channels.
Notably, even channel 26 has a channel occupancy rate as high as 95.04%, contradicting the
commonly-held assumption that channel 26 will be open. The uniformly high occupancy
rate across channels is likely caused by a relatively high-power spread-spectrum signal across
the whole 2.4 GHz spectrum, which appears in Figure 2.1 as a series of thin blue arches.
Devices with such wireless footprints include Bluetooth transmitters, baby monitors, wireless
speaker systems, and game controllers [2]. (Unfortunately, by the very nature of residential
environments lacking central management of wireless devices, there is no way to be certain
about the sources of some of these phenomena.)

The only channel in apartment 5 with an occupancy rate below 95% is channel 15, which in
contrast has an occupancy rate of 100.0% in apartments 3 and 4; thus, there is no common
good channel in these apartments. In the case of apartment 3, channel 15 is unusable due
to it intersecting with the middle of multiple 802.11 APs, represented as superimposed arcs
on the left side of apartment 3’s energy trace. For apartment 4, we see that only channels
25 and 26 have low occupancy rates; this phenomena is likely caused by the tall blue shape
across most of apartment 4’s energy trace, corresponding to some sporadic but high-power
interferer.

Observation S1: There may not exist a common idle channel across different homes, due
to significant diversity in their spectrum usage patterns.
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(a) Daily standard deviation

(b) Hourly standard deviation

(c) 5-minute standard deviation

Figure 2.3: The standard deviation in channel occupancy rate at different timescales.
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2.3.3 Does Spectrum Usage Change with Time?

We next explored whether the spectrum was stable in these residential settings. If spectrum
is stable within a given apartment, it would be possible for a technician to pick a single
“best” channel for the HAN at deployment time and expect it to work well over a long time
period.

To determine this, we calculated the standard deviation in occupancy (�) for each apartment
and each channel. Figure 2.3 plots the standard deviation from day-to-day, from hour-to-
hour, and for every 5 minutes. We see that channel conditions in most apartments can
be quite variable, regardless of the timescale used. Except for apartment 4, � ranges from
24.0%–36.2% for the worst channel at a daily timescale, from 27.4%–43.9% at an hourly
timescale, and 36.4%–50.0% at a 5-minute timescale. Apartment 4 is stable across the
spectrum on a day-to-day basis, with � ≤ 2.5% for all channels. However, even for this
apartment, some variability emerges at shorter timescales, with channel 24 featuring a � =

14.9% on an hourly timescale and � = 36.0% at a 5-minute timescale.

We also note that the office had much lower variability than all but apartment 4. For
example, at a daily timescale, 10 of the 16 channels had � < 1.0%, and the most highly-
variable channel had � of only 13.7%. Indeed, even at a 5-minute timescale, only three
channels reveal significant variability; these three channels are at the edge of the campus
802.11g network (15), at the center of the same network (19), and at the center of the
building’s 802.15.4 testbed (25).

Observation S2: Spectrum occupancy in homes can exhibit significant variability over time,
whether looking at timescales of days, hours, or minutes.

2.3.4 Is Channel Occupancy Temporally Correlated?

Although channel occupancy is highly variable even on a timescale of minutes, there may
nevertheless be temporal correlations in channel usage on even shorter time scales (e.g.,
packet-to-packet). To determine if such a correlation exists, we computed the conditional
channel usage function (CCUF ) for each channel in each apartment. For k > 0, CCUF (k)
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is the conditional probability that k consecutive busy readings are followed by another busy
reading; for k < 0, CCUF (k) is the conditional probability that ∣k∣ consecutive idle readings
are followed by another idle reading.

Figure 2.4 plots the CCUF for three apartments and four channels; results for other
apartments and other channels are similar but omitted for space. For all channels and
all apartments, CCUF rapidly stabilizes to ≥ 80% within 10 minutes, indicating that a
small channel-assessment window is sufficient to estimate channel condition with high prob-
ability. Moreover, the CCUF curve remains relatively flat after increasing to ≥ 80%. This
indicates that longer windows (of 20 to 40 minutes) have minimal benefit for predicting
channel conditions.

Observation S3: A short (≤ 10 minute) channel assessment window is sufficient for esti-
mating channel conditions with high probability; larger time windows provide minimal benefit.

2.3.5 Is Wi-Fi the Dominant Source of Spectrum Usage?

Because of Wi-Fi’s ubiquity and relatively high transmission power, it is often treated as
a dominant interferer. Thus, our final analysis of our passive spectrum data is to identify
whether there are other significant sources of interference. If Wi-Fi is indeed the dominant
interferer in residential settings, then HANs could leverage solutions which are specifically
designed to avoid interference from Wi-Fi networks (e.g., [70]).

A visual inspection of Figures 2.1 and 2.2 suggests other important interferers besides Wi-
Fi. Wi-Fi APs have a distinctive radiation pattern that manifests in Figure 2.1 as arcs the
width of several 802.15.4 channels. For example, the energy traces for apartment 3 show
two distinct arcs that are likely caused primarily by 802.11 APs configured to two different
channels. Referring to Figure 2.2, we see that these areas of the spectrum are indeed highly
occupied. However, looking at the energy trace for apartment 5, we see evidence of Wi-Fi
APs on only part of the spectrum; nevertheless, the channel occupancy rate is above 95%
for nearly the entire spectrum. This phenomena can be explained by the series of blue arcs
across the 2.4 GHz spectrum, which indicate sporadic but high-powered spread-spectrum
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(a) Apartment 1

(b) Apartment 3

(c) Apartment 5

Figure 2.4: Conditional channel usage functions (CCUF s) in three different apartments.
The X axis indicates consecutive busy or idle readings, where negative values represent
consecutive idle readings and positive values represent consecutive busy readings. The Y
axis provides the probability that the channel is currently idle/busy given x prior time slots
which were all idle/busy.
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Figure 2.5: A comparison of the average channel occupancy rate between channels that
overlap with Wi-Fi and channels that do not.

transmissions. (Again, by the nature of the environment, we cannot be certain about the
source of this noise pattern.)

To quantify the relative impact of Wi-Fi, we leverage a feature of the Wi-Spy which logs the
service set identifier (SSID) and 802.11 channel of all visible 802.11 access points (APs)2.
Based on this data, we are able to divide the 802.15.4 channels in each apartment into two
groups: those that overlap with 802.11 APs detectable from the corresponding apartment,
and those that do not. We then calculated the average channel occupancy rate for each of
the two groups in each apartment, as shown in Figure 2.5.

In most of the apartments, there is a clear distinction between the overlapping and non-
overlapping channels. For example, apartment 1 has an average occupancy rate of 89.7% for
the overlapping channels compared to 18.3% for the non-overlapping ones. But strikingly,
we find that the non-overlapping channels are not always significantly more idle than those
which overlap with Wi-Fi APs. In apartments 4 and 5, the channel occupancy rates of the
non-overlapping channels are similar to the overlapping ones; indeed, in apartment 5, the
non-overlapping channels are slightly more occupied on average than the overlapping ones.
This observation can have important implications on the design of HANs, in that solutions

2Although many APs may be configured not to broadcast their SSID, we have observed that the Wi-Spy
software can still identify these “hidden” access points in practice.
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specifically designed to deal with Wi-Fi interference may not be effective in all residential
environments.

Observation S4: While Wi-Fi is an important source of interference in residential envi-
ronments, other interferers can also be non-negligible contributors to spectrum occupancy.

2.4 Multi-Channel Link Study

In this section, we present a multi-channel link study in homes. The spectrum study pre-
sented in Section 2.3 focuses on characterizing the ambient wireless environment in homes.
While link quality can be significantly influenced by interference from existing wireless sig-
nals, other factors such as signal attenuation and multi-path fading due to human activities
can also impact the reliability of low-power wireless links. Our link study directly evaluates
the multi-channel behavior of HANs by actively sending packets between motes equipped
with 802.15.4 radios.

Specifically, this study addresses the following questions. (1) Can a HAN find a single
persistently reliable channel for wireless communication? (2) If a good channel cannot be
found, are packet retransmissions sufficient to deal with packet loss? (3) If no single channel
can be used for reliable operation, can the network exploit channel diversity to achieve
reliability? (4) Do channel conditions exhibit cyclic behavior over time? (5) Is reliability
strongly correlated among different channels? (6) How effective is increasing transmission
power for improving link reliability?

2.4.1 Experimental Methodology

For this active study, we carried out a series of experiments in ten real-world apartments in
different neighborhoods, as listed in Table 2.2. (Due to the participating residents moving,
only four of the apartments in this study are the same as those instrumented in the spectrum
study.) Figure 2.6 shows an example floor plan of one of the apartments used in the study;
a similar topology was deployed in the other apartments. Each experiment was carried out
continuously for 24 hours with the residents’ normal daily activities.
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Figure 2.6: Floor plan of an apartment used in the study.

Begin Date End Date
Apt. 1 Sept. 30, 2009 Oct. 1, 2009
Apt. 2 Sept. 30, 2009 Oct. 1, 2009
Apt. 3 Oct. 3, 2009 Oct. 4, 2009
Apt. 4 Oct. 3, 2009 Oct. 4, 2009
Apt. 5 Sept. 30, 2009 Oct. 1, 2009
Apt. 6 Sept. 12, 2009 Sept. 13, 2009
Apt. 7 Oct. 3, 2009 Oct. 4, 2009
Apt. 8 Sept. 18, 2009 Sept. 19, 2009
Apt. 9 Oct. 6, 2009 Oct. 7, 2009
Apt. 10 Oct. 6, 2009 Oct. 7, 2009

Table 2.2: The settings and dates where the link data was collected.
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Figure 2.7: Box plot of the PRR for four channels in all ten apartments, calculated over 5-
minute windows. Central mark in box indicates median; bottom and top of box represent the
25th percentile (q1) and 75th percentile (q2); crosses indicate outliers (x > q2 + 1.5 ⋅ (q2− q1)
or x < q1−1.5 ⋅ (q2− q1)); whiskers indicate range excluding outliers. Vertical lines delineate
apartments.
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Figure 2.8: Box plot of the PRR of five different links in the same apartment on four channels,
calculated over 5-minute windows. Vertical lines delineate links.

Our experiments were carried out using networks of Tmote Sky and TelosB [88] motes.
Each mote is equipped with an IEEE 802.15.4 compliant Chipcon CC2420 radio [3]. IEEE
802.15.4 radios like the CC2420 can be programmed to operate on 16 channels (numbered 11
to 26) in 5 MHz steps. We leverage the CC2420’s Received Signal Strength (RSS) indicator
in our experiments to measure the signal power of environmental noise. Our experiments
are written on top of the TinyOS 2.1 operating system [4] using the CC2420 driver’s default
CSMA/CA MAC layer.

We measure the packet reception ratio (PRR), defined as the fraction of transmitted packets
successfully received by the receiver. PRR is not only a direct indicator of link reliability, but
also closely related to other important QoS metrics such as latency and energy consumption.
To measure the PRR of all channels at a fine granularity, we deployed a single transmitter
node in each apartment which broadcast packets over each of the 16 channels. Specifically,
the transmitter sent a batch of 100 consecutive packets to the broadcast address using a
single wireless channel, then proceeded to the next channel in a round robin fashion. The
process of sending 16 batches of 100 packets repeated every 5 minutes. The recipient nodes
record the PRR over each batch of packets into their onboard flash memory. The use of a
single sender and multiple recipients allowed us to test multiple links simultaneously while
avoiding interference between senders. (Inter-link interference is not a major concern in many
HANs due to the low data rates that are typically employed; for example, 1 temperature
reading every 5 minutes is sufficient for an HVAC system to control ambient temperature.)

It is worth noting that HAN applications such as smart energy require persistent, long-term
reliability. Transient link failures are non-negligible — these failures represent periods where
parts of a household may experience sporadic service or no service at all (e.g., changing
the thermostat may have no effect until a wireless link is restored minutes or hours later).

20



www.manaraa.com

Hence, our study looks not just at the average PRR of each link but at its entire range of
performance, including those outliers that indicate temporary failures.

In [115], links with a PRR below 10% were found to be poor-quality, and links with a PRR
between 10% and 90% to be bursty. Accordingly, we use a PRR of 90% throughout this
section as a threshold to designate links as “good” or “reliable”.

2.4.2 Is There a Persistently Good Channel?

We first analyzed our data from the perspective of finding a single, persistently good channel
across all of the tested apartments. Again, if a common good channel exists across all
apartments, then it could be used as a preset default channel for HANs. For this analysis,
we grouped the data from all links in all apartments together and then subdivided it by
channel. Figure 2.7 presents a box plot of the PRR in 4 channels in all the apartments, where
the PRR has been calculated over 5-minute windows. (The remaining 12 channels exhibit
similar behavior and are omitted for reasons of clarity.) From this figure, we see significant
variations in PRR on the same channel when moving from apartment to apartment. For
example, channel 11 achieves a median PRR > 90% in apartments 1, 3, and 9, albeit with
many outliers; however, the same channel has a near-zero median PRR in apartment 2. Only
channel 26 has a median PRR above the 90% threshold in all apartments.

We also see significant variations in PRR from channel to channel, even in the same apart-
ment. Strikingly, these variations even affect channel 26, which is often considered an open
channel since it is nominally outside the 802.11 spectrum in North America. Although chan-
nel 26 achieves uniformly high median PRR in all apartments, there are numerous points
during the experiment where the PRR falls much lower. For example, apartment 9 has a
25th percentile PRR of 0.0%, indicating a substantial portion of the experiment where the
channel experienced total link failure.

Further analysis showed that there is not likely to be a single good channel across multiple
links in the same apartment. We regrouped the PRR data, this time looking at the perfor-
mance of each link/channel pair individually. Figure 2.8 presents a box-plot of the PRR for
all five links within one apartment; again, for reasons of clarity, we present the data from
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Figure 2.9: The lowest PRR observed on each link’s most reliable channel.

only 4 of the 16 channels. We observe that the median PRR on a given channel varies greatly
across links, particularly for outlier points. Again, this variation even affects channel 26: all
five links have at least one outlier below the 90% threshold, and four links have numerous
outliers below the threshold. Link 1 shows particularly high variance on channel 26, with
a 25th-percentile PRR of only 73.5% in spite of a 98.0% median PRR. We also note that
all four channels had numerous outliers below a PRR of 10%; that is, any single channel
selection would have led to at least one link experiencing near-total disconnection at some
point during the day.

Notably, each link had at least one channel with a high median PRR and low variance. For
instance, as shown in Figure 8, link 1 shows a particularly high quality on channel 16 with
a 99.3% median PRR and a variance less than 10%, while this link presents a high variance
on channel 26, with a 25th-percentile PRR of only 73.5% in spite of a 98.0% median PRR.
This indicates that all the links in our study are relevant to HAN applications given proper
selection of channels.

Observation L1: Link reliability varies greatly from channel to channel.

Looking at the entire dataset across all apartments, we found that few links were able to
achieve a consistently high PRR, even on their most reliable channels. Figure 2.9 plots the
lowest PRR observed on each link’s most reliable channel: i.e., for the channel which achieves
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Figure 2.10: CDF of number of consecutive drops.

the highest average PRR over 24 hours, we plot the worst PRR out of all the 100-packet
batches. Notably, only 12 of the 34 links in our dataset are able to persistently reach the
90% PRR threshold on even their best channel. Indeed, even lowering the threshold to 70%,
more than half the links in our dataset would still have no persistently good channel.

Observation L2: Link reliability varies greatly over time, even within the same channel.
Hence, even when selecting channels on a per-link basis, there is not always a single persis-
tently reliable channel.

2.4.3 Is Retransmission Sufficient?

Because retransmissions are effective in alleviating transient link failures, we next analyze
whether it would be effective in alleviating the link failures observed in our experimental
traces. However, we found that retransmissions alone are insufficient in residential environ-
ments, due to the bursty nature of the packet losses.

Figure 2.10 illustrates this problem with the cumulative probability density (CDF) of con-
secutive packet drops for all links on four channels. Specifically, we measured consecutive
packet losses within each batch of 100 packets; we did not include inter-batch losses due to
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the 5-minute gap between batches. Even on the best channel (channel 26), up to 85 consecu-
tive packet drops were observed, and 10% of link failures lasted for more than 60 consecutive
packets. On the remaining three channels, bursts of more than 95 consecutive packet drops
were observed.

Observation L3: Retransmissions alone are insufficient for HANs due to the burstiness of
packet losses.

2.4.4 Is Channel Diversity Effective?

Our analysis above indicates that using a single channel is often not acceptable when long-
term reliability must be maintained. Thus, a natural question to ask is whether it is feasible
to exploit channel diversity to achieve reliability in situations where single channel assign-
ments are not practical.

To understand the potential for channel hopping, we retrospectively processed our dataset
to find the minimum number of channel hops needed to maintain a 90% PRR threshold
using a greedy algorithm. We prove the optimality of the algorithm in [106]. Figure 2.11(a)
plots the number of channel hops required for 10 links in the dataset, one randomly selected
from each apartment. We find that relatively few channel hops are needed to maintain link
reliability; in no case is more than 20 hops required per day.

We note that there are periods where none of the 16 channels meet the PRR threshold,
and hence no channel hopping occurs during these times. Nevertheless, channel-hopping can
significantly reduce the number of link failures compared to picking the single “best” channel
(i.e., that with the highest average PRR). Figure 2.11(b) compares the proportion of windows
which meet the 90% threshold under two retrospective strategies: an ideal channel-hopping
strategy that maintains the PRR threshold with the minimum number of channel hops, and
a strategy that fixes each link to its single “best” channel with the highest average PRR.
(Note that both strategies make decisions based on the entire data trace retrospectively,
and hence cannot be employed at run time; they are chosen here to analyze the potential
benefit of channel hopping.) In some cases, the improvements achieved by channel hopping
are modest. For example, links 6 and 7 only achieve a 0.7% and 1.0% higher success rate
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(a) Minimum number of channel hops required; one link randomly selected
per apartment.

(b) The proportion of windows where the PRR threshold was met.

Figure 2.11: Retrospective channel-hopping analysis in different apartments.
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under channel hopping, largely because their success rates were already high without channel
hopping. However, in most cases, we find notable improvements in link success. For example,
6 out of the 10 links experience at least 5% fewer failures with channel hopping than with
their single best channel; and links 1 (11.0%) and 4 (13.1%) have substantially higher success
rates with channel hopping.

Channel hopping has been proposed in industry standards as a means for improving wireless
link reliability, including established standards like Bluetooth’s AFH [5] and newer standards
such as WirelessHART’s TSMP [6] and the forthcoming IEEE 802.15.4e [10]. The results of
our analysis confirm that this feature is indeed beneficial for maintaining link reliability in
challenging residential environments.

Observation L4: Channel hopping is effective in alleviating packet loss due to channel
degradation. Occasional channel hopping can effectively maintain reliable communication.

2.4.5 Can Hopping be Scheduled Statically?

Because channel quality varies over time, we next explored whether it exhibits cyclic prop-
erties (e.g., due to recurrent human activities and schedules). If so, then channel-hopping
could be implemented in a lightweight fashion by generating a static channel schedule for
each environment. To perform this comparison, we carried out an extended experiment us-
ing same setup in one apartment over a period of 14 days. We then calculated the Pearson
product-moment correlation coefficient (PMCC) [117], a common measure of dependence
between two quantities, as r. Intuitively, r values near −1 or 1 indicate strong correlation,
while values near 0 indicate independence.

Figure 2.12(a) plots r for PRRs calculated at the same times on subsequent days (e.g., 4
PM on Monday vs. 4 PM on Tuesday). Figure 2.12(b) compares the PRR during the
same time in consecutive weeks (e.g., 4 PM on Monday vs. 4 PM on the next Monday).
∣r∣ is almost always smaller than 0.4, regardless of the channel used; this indicates that
there is no obvious correlation between consecutive days or consecutive weeks. Therefore,
channel-hopping decisions must be made dynamically based on channel conditions observed
at runtime.
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(a) PMCC of PRRs during the same time on consecutive days.

(b) PMCC of PRRs during the same time in consecutive weeks.

Figure 2.12: The Pearson’s product correlation coefficient (PMCC) comparing the PRR at
the same time on consecutive days or weeks.
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Figure 2.13: Correlation of channel reliability. The X and Y axes indicate channels; the color
indicates the probability that channel x’s PRR < 90% when channel y’s PRR < 90%.

Observation L5: Channel conditions are not cyclic, so channel-hopping decisions must be
made dynamically.

2.4.6 How Should New Channels be Selected?

Since channel-hopping must be performed dynamically, it is important to pick a good strategy
for selecting new channels when the current channel has degraded beyond use. For the
purposes of this analysis, we studied the effect of channel distance (the absolute difference
between channel indices) on the conditional probability of channel failure (the probability
that channel x is below the PRR threshold when channel y is also below the threshold).

We observe that not all channels are equally good candidates for channel hopping: from
Figure 2.13, we can see that performance is strongly correlated across adjacent channels.
For instance, when channel 20 has poor PRR (< 90%), there is a probability greater than
76.8% that channels 18, 19, 21, and 22 also suffer from poor PRR. In Figure 2.14, we plot
the conditional probability of link failure as a function of channel distance. We observe that
this probability can be as high as 70% between neighboring channels and 60% between every
other channel, but drops off as channel distance increases. When facing a failing channel,
a probabilistic approach on new channel selection should be used to avoid jamming the
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Figure 2.14: Correlation of channel reliability as a function of channel distance.

new channel. Designing a channel selection algorithm is out of the scope of this chapter.
The focus of this chapter is on the empirical studies that provide ground truth and insights
for designing and managing HANs. We have since developed a practical channel selection
scheme [103] based on the findings presented in this chapter.

Observation L6: Reliability is strongly correlated among adjacent channels; a device should
probabilistically select a new channel that is at least three channels away from the failing
channel.

2.4.7 How effective is increasing transmission power for improving

link reliability?

As an orthogonal approach to channel hopping, transmission power control [73] [44] aims to
maintain link quality by dynamically adjusting transmission power. We evaluate transmis-
sion power control’s potential for maintaining channel reliability through a microbenchmark
experiment. For this evaluation, we repeat the same experimental setup used in the previ-
ous experiments, except using multiple transmission powers. Specifically, the transmitting
node was configured to send 100 consecutive packets at a given transmission power; this
was repeated over 29 of the CC2420’s 31 distinct power settings in a round-robin fashion.
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(The two lowest power settings were excluded from this experiment, as the manufacturer
has indicated that the CC2420’s output power is unstable at these settings [3].)

Figure 2.15 plots the PRR on three different channels in one apartment; results for other
apartments and other channels are similar but omitted for space. We observe that adjusting
transmission power can indeed be effective at improving link quality. Figure 2.15(b) presents
the PRR from the worst channel (18): on this channel, the median PRR increases from 68%
to 91% when the transmission power level increases from 4 to 11, and further increases to
95% at the maximum transmission power (level 31). Nevertheless, the impact of switching
channels may be even more pronounced, as seen by comparing Figure 2.15(a) through 2.15(c).
By changing to channel 26, a link on channel 11 or 18 could have achieved a comparable
increase in PRR while remaining at power level 3. Moreover, switching channels can be
significantly less expensive than increasing transmission power: for example, on the CC2420,
increasing the transmission power can increase the radio’s current consumption from as low
as 8.5 mA to as high as 17.4 mA [3]. Hence, leveraging channel diversity in conjunction with
transmission power control can potentially result in significant energy savings.

Observation L7: Increasing transmission power may be effective for maintaining channel
reliability, but is potentially expensive. Combining channel diversity with transmission power
control is a promising strategy for controlling energy consumption while maintaining network
reliability.

2.5 Conclusion

HANs based on wireless sensor network technology represent a promising communication
platform for emerging home automation applications such as smart energy. These emerging
applications often impose stringent wireless communication requirements in terms of net-
work reliability, which are made challenging by the complex and highly variable wireless
environments in typical residential environments. This chapter presents an empirical study
on the performance of HANs in real-life apartments, looking both at passive spectrum analy-
sis traces and an active probing link study. The observations made in our study highlight the
significant challenges that face HAN applications for achieving reliable wireless communica-
tion in residential settings. Nevertheless, our observations also suggest that these challenges
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(a) Channel 11

(b) Channel 18

(c) Channel 26

Figure 2.15: Box plot of the PRR of a link over 29 different transmission power levels.
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may be tamed through the judicious use of channel diversity. Specifically, we may distill our
findings into set of key design guidelines for developing reliable HANs:

1. Channel selection can have a profound impact on HAN reliability. Channel selection
cannot be simply relegated a static channel assignment, whether made at the factory
or at deployment time. (S1, L1, L2)

2. Retransmissions alone cannot always compensate for a poor-quality channel. (L3)

3. Short time channel assessment is effective in estimating channel condition, since larger
time window of measurement cannot bring more benefit. (S3)

4. Although Wi-Fi is a major source of channel usage, other wireless technologies may also
contribute significantly to channel usage. Solutions which target a single interfering
technology are not always sufficient in residential environments. (S4)

5. Reliable communication can be maintained through occasional channel hopping. (L4)

6. Channel hopping cannot be performed based on a static, cyclic schedule. (L5) Instead,
channel-hopping decisions should be made dynamically based on conditions observed
at runtime. (S2, L2)

7. A device should probabilistically select a new channel that is at least three channels
away from the failing channel. (L6)

8. Increasing transmission power may be effective for maintaining channel reliability, but
is potentially expensive. Combining channel diversity with transmission power control
is a promising strategy for controlling energy consumption while maintaining network
reliability. (L7)

We believe that our findings and insights will provide general design guidelines and impact
the development of HANs that are gaining increasing importance with the emergence of
smart energy as the “killer app” for wireless sensor networks.
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Chapter 3

ARCH: Adaptive and Robust Channel
Hopping for Home-Area Sensor
Networks

3.1 Introduction

Home automation technologies aim to provide households with a high degree of control and
monitoring of common household devices. Such technologies form an integral part of emerg-
ing “smart home” applications ranging from energy metering to assisted living. Low-power
wireless sensor networks (WSNs) represent an attractive technology for retrofitting existing
residences with home automation applications. Such home area network (HAN) devices can
be operated without the need for fixed power or communication infrastructure, alleviating the
need to install a wired power and communication infrastructure. However, the very fact that
these HANs do not depend on a fixed infrastructure also poses key deployment challenges.
Unlike traditional wired technologies, HANs depend on low-power wireless communication
susceptible to interference in the free 2.4 GHz ISM band.

We recently performed an in-depth empirical study into the reliability of HANs in real-world
apartment buildings [106]. Our study demonstrated the need for dynamic channel hopping
in maintaining reliable links: in an apartment, there is usually no single channel which is
persistently reliable for 24 hours at a time. Moreover, we observed that many individual links
suffered long-lived disconnections on a particular channel; these bursty losses meant that
retransmissions alone were insufficient to maintain a target link quality. We also found that
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channel reliability does not exhibit cyclic behavior, requiring that channel-hopping decisions
be made based on conditions observed at runtime. Nevertheless, switching channels even a
few times at runtime could effectively maintain reliable communication.

In this chapter, we draw on these insights to develop the Adaptive and Robust Channel
Hopping (ARCH) protocol. ARCH enhances network reliability through channel diversity :
devices opportunistically change their radio’s frequency in order to avoid adverse channel
conditions such as interference and environmental noise. ARCH has the following salient
features that distinguish it from existing channel diversity schemes:

1. ARCH adaptively selects channels based on runtime conditions, hopping channels only
when channel conditions have degraded. ARCH achieves consistent reliability on ex-
isting 802.15.4 radio hardware with minimal channel-switching overhead.

2. ARCH is distributed and selects channels on a per-link basis, rather than synchronizing
hops across the entire network. Hence, ARCH’s coordination policy is simple, and
nodes can avoid localized phenomena.

3. ARCH is lightweight and robust, allowing it to be feasibly implemented on constrained
WSN hardware.

4. ARCH also introduces minimal communication overhead, leveraging existing packet
acknowledgments when available.

We evaluate our approach through trace-driven simulations and through real deployment
in real-life apartments with residents’ daily activity. Our results in a single-hop scenario
demonstrate that ARCH can reduce the number of packet retransmissions by a median of
42.3% compared to using a single, fixed wireless channel, and can enable up to a 2.2×
improvement in delivery rate on the most unreliable links in our experiment. Under a
multi-hop scenario, ARCH achieved an average 31.6% reduction in radio usage, by reducing
the ETX of each link by up to 83.6%. Due to ARCH’s lightweight reactive design, this
improvement in reliability is achieved with an average of 10 or fewer channel hops per link per
day. ARCH’s lightweight design also allows it to be reasonably deployed even on constrained
WSN hardware: adding ARCH to a multi-hop data collection application introduced an
overhead of only 480 bytes of program ROM and 26 bytes of RAM.
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The rest of the chapter is organized as follows. Section 3.2 reviews related work. Section 3.3
discusses the design of ARCH channel-hopping protocol. Section 3.4 presents a series of
simulator-driven and real-world experiments which illustrate ARCH’s efficiency in alleviating
packet loss due to poor channel conditions. Finally, we conclude in Section 3.5.

3.2 Related Work

In recent years, there has been increasing interest in using channel hopping to enhance MAC
layer performance. SSCH [15] aims to improve network capacity by using channel hopping
to prevent interference among simultaneous transmissions. [83] proposes a rapid channel
hopping scheme to protect from jamming attacks in the 802.11a band. Other multi-channel
protocols [62,67,68,124,126,133] have been proposed for WSNs with their limited resources
in mind. Our work is distinguished from these protocols in two key ways. First, these
protocols focus on enhancing throughput, while our own work aims for enhanced reliability.
Second, these works deal primarily with in-network interference, while ARCH is designed
to avoid external sources of interference and other environmental noise. These differences
in design goals reflect the specific requirements of typical HAN applications: real-life HANs
typically feature applications with low data rate requirements, but are subject to strong
external interference and environmental impacts.

Hauer et al. [47] discusses a multi-channel measurement of Body Area Networks (BANs).
Hauer’s study features controlled indoor experiments along with outdoor experiments carried
out during normal urban activity, and concludes that channel hopping schemes may use noise-
floor measurements to effectively detect and mitigate the effects of interference. In contrast,
ARCH’s design is based on empirical study of the multi-channel properties in residential
environments, which often exhibit highly complex behavior. Accordingly, ARCH evaluates
channel conditions using direct Estimated Transmission Count (ETX) measurements.

Several industry standards, such as WirelessHART’s TSMP [6], Bluetooth’s AFH [5], and
ZigBee 2007’s optional frequency agility [134], leverage channel diversity to improve link
reliability. While both TSMP and our approach are based on the 802.15.4 standard, ARCH
employs a simpler reactive channel-hopping mechanism in contrast to TSMP’s automatic
pseudorandom channel-hopping scheme. Because WirelessHART is targeted to industrial
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applications with stringent reliability requirements (e.g., safety-critical monitoring and con-
trol systems), it uses sophisticated TDMA techniques and a complex centralized network
controller to ensure channel reliability even in harsh environments. ARCH’s relative sim-
plicity makes it a more cost-effective and easier-to-deploy solution for home automation
applications, where reliability requirements are less stringent. Bluetooth, particularly the
emerging low-power Bluetooth standard, represents another potential approach to HANs;
like TSMP, Bluetooth’s AFH avoids persistent interference by constantly hopping pseudo-
randomly across channels. ARCH serves as an alternative approach based on the 802.15.4
standard, where radio chips are typically not designed to accommodate AFH’s aggressive
channel-hopping schedules. ZigBee 2007’s frequency agility uses a centralized channel man-
ager node to synchronize channel usage across the whole network; based on the results of our
empirical study, ARCH instead selects channels on a per-link basis in order to avoid localized
effects of environmental noise. Moreover, ZigBee 2007 explicitly leaves key portions of the
frequency agility scheme (such as the mechanism for selecting new channels) unspecified,
providing only general suggestions for how these components could be implemented. In con-
trast, ARCH represents a complete instantiation of a practical, lightweight channel hopping
algorithm.

3.3 Protocol Design

In this section, we present the design of our ARCH protocol. ARCH is designed based on the
key observations in our empirical study and has the following salient features. First, ARCH
is an adaptive protocol that channel-hops based on changes in channel quality (specifically,
ETX) observed in real time. We use ETX rather than RSSI/LQI to indicate link quality
because RSSI/LQI are not sufficiently robust in complex indoor environments [44]. Second,
ARCH is a distributed protocol that hops channels on a per-link basis, based on the observa-
tion that channel conditions can vary greatly from link to link even within the same network.
Third, ARCH is designed to be robust and lightweight. ARCH uses a practical hand-shaking
approach to handle channel desynchronization and an efficient sliding-window scheme to
predict channel deterioration, and can be reasonably implemented on memory-constrained
wireless sensor platforms. Fourth, ARCH introduces minimal communication overhead for
applications where packet acknowledgements are already enabled.
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We will begin by discussing the design insights based on the key findings in our previous
empirical study, and then present the ARCH algorithm in outline. We will then describe
several important subcomponents of ARCH — channel condition estimation, opportunistic
channel selection, and coordination across nodes — in more detail. Finally, we will discuss
mechanisms in ARCH for detecting and handling channel desynchronization errors.

3.3.1 Design Insights

To investigate the multi-channel wireless properties of residential environments, we carried
out a series of experiments in ten real-world apartments constructed by different housing
companies. Several key insights derived from our study formed the basis for ARCH’s design;
we summarize the relevant findings in this subsection. More details on the study may be
found in [106].

Is Channel Diversity Effective?

Our study found that there was usually no single channel which was persistently reliable for
24 hours at a time. Hence, we considered channel diversity as a means to achieve long-term
link reliability. After retrospectively analyzing our experimental traces to find an optimal
channel hopping schedule, we found that relatively few channel hops are needed to maintain
a target link quality. Only 5, 8, and 36 hops were needed per day to meet target packet
reception rate (PRR) thresholds of 80%, 90%, and 95%, respectively.

Insight 1: Link reliability can be achieved through relatively occasional channel hopping.

Can Hopping be Scheduled Statically?

If channel quality exhibits cyclic properties, then channel-hopping could be implemented in
a lightweight fashion by generating a static channel schedule for each environment. However,
our study found no obvious cyclic, predictable schedule of interference patterns.
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Insight 2: Channel-hopping decisions must be made dynamically based on channel condi-
tions observed at runtime.

How Should New Channels be Selected?

Since channel-hopping must be performed dynamically, it is important to pick a good strategy
for selecting new channels when the current channel has degraded beyond use. Our analysis
found that channel quality is often correlated among spatially nearby channels. Hence,
channel selection should favor new channels which are further away from the current channel.

Insight 3: It is more beneficial to switch to a further-away channel when the current channel
degrades beyond use.

3.3.2 ARCH Protocol Outline

Based on the above findings, we now outline our design for ARCH. ARCH is a receiver-
oriented protocol; i.e., receivers select the communication channel for all incoming links, and
senders switch to the recipient’s channel when they wish to transmit a packet. Each link is
initially set to use some predefined Default Cℎannel out of a provided Cℎannel Pool. This
pool specifies the channels which the application is allowed to use; this could be selected at
design time to include all 16 channels or some subset (e.g., 4 orthogonal channels).

As a packet arrives, the channel’s reliability (represented as ETX) is updated, as discussed
in more detail in Section 3.3.3. When the ETX exceeds a specified ETX Tℎresℎold, the
receiver node will select a new channel from the channel pool (see Section 3.3.4) and initiate
a channel hop. The receiver then notifies all of its senders of this channel hop using the
mechanism discussed later in Section 3.3.5.

To avoid the bursty packet loss observed in [106], ARCH blacklists bad channels so that
they will not be used again for at least a short time period. ARCH ensures that enough
candidate channels are available by un-blacklisting the entire channel pool when the number
of candidate channels drops below a specified Standby Cℎannel Tℎresℎold.
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3.3.3 Channel Estimation

Insights 1 and 2 highlight the importance of reactively hopping channels based on runtime
channel quality data. A key component of this approach is an agile channel estimation
scheme that can quickly and accurately detect channel degradation at runtime. Estimating
the reliability of a wireless link or channel is a challenging topic which has garnered significant
interest in the research community. One common quality metric is ETX, which represents
link quality as the number of (re)transmissions required for a successful reception. ETX is
particularly compelling for home automation applications because it can be estimated from
sequence numbers embedded in existing packets. Thus, there is no need for expensive active
probing.

We note that ARCH does not perform a moving average over multiple ETX values, as in
e.g. TinyOS’s four-bit link estimator [36]. Instead, ARCH maintains a sliding window of
ETX values for the last m packets; a channel is predicted to be unreliable if all m ETX
values exceed some threshold value. Our trace study in Section 3.4.1 demonstrates that this
approach can predict channel reliability with sufficient accuracy using as little as 15 minutes’
worth of history.

3.3.4 Opportunistic Channel Selection

As noted in Insight 3, link quality is often strongly correlated among adjacent channels.
Hence, using a fixed channel hopping sequence is therefore neither safe nor robust: we wish
to avoid channels which are spatially close to the current, poor-quality channel. Likewise,
we do not wish to continuously monitor all channels in order to support channel selection
decisions; while effective, this would incur unreasonable overhead.

Instead, ARCH uses a probabilistic scheme to select new channels. When hopping chan-
nels, ARCH generates a random number q ∈ [0, k] for each non-blacklisted channel in the
Cℎannel Pool, starting from the furthest-away channel to the closest. If q falls into the
range [0, cik] (ci < 1), then channel i will be selected. ci is weighted according to the spec-
tral distance away from the currently-used channel: the larger the distance, the more likely
that a channel is selected.
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3.3.5 Coordinated Channel Hopping

In [106], we observed that channel quality may vary significantly even within a network.
Hence, ARCH does not hop channels in lockstep across the entire network. Instead, ARCH
uses a receiver-oriented approach to channel selection. In effect, each node specifies which
channel they wish to use to receive packets. Whenever a node detects channel degradation
on its incoming links, it selects a new channel using the policy described in Section 3.3.4.

A simple coordination policy allows ARCH to transparently support both single-hop and
multi-hop routing. Upon selecting a new channel, nodes notify their neighbors of this change
(using a mechanism described below), who then record this information in their neighbor
tables. Nodes stay on their own (receiving) channel as often as possible. When a node
transmits data, it temporarily switches channels to match its recipient, then switches back
after waiting long enough to receive an ACK. Thus, the node can continue to receive packets
from other nodes further upstream; the only times a node leaves it own channel is when it
transmits data downstream, when it could not have received data anyway.

Two strategies exist to notify neighbors of channel hops. First, a node may notify its up-
stream neighbors one-by-one. In the interest of minimizing overhead, this notification may
be embedded in ACK packets the next time the node receives a packet from an upstream
neighbor. Second, the node may broadcast an explicit channel hopping message to all neigh-
bors in range. The first approach introduces the lowest overhead, but may delay the channel
hop for excessively long periods of time and cannot handle situations where the node has
not yet discovered a neighbor. The second approach requires an additional control packet
and may not work for asymmetric links (since broadcasts are unreliable), but allows a node
to coordinate with undiscovered neighbors.

Based on these tradeoffs, ARCH implements a hybrid policy which combines the two forms of
notification, shown in Algorithm 1. Additional measures are employed to handle coordination
failures, as described in the next subsection.

Because a node’s neighbors may reside on different channels, broadcast traffic patterns may
be handled by transmitting unicast packets to each of a node’s neighbors on their respective
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Algorithm 1
1: if received data packet then
2: if detected channel degradation and Pending = 0 then
3: Select a new channel;
4: if only has one neighbor then
5: Send back ACK with immediate channel hop;
6: Set new receiving channel.
7: else
8: Send back ACK with pending channel hop;
9: Set Pending = 1;
10: Save new receiving channel.
11: end if
12: else if Pending = 1 then
13: if the sender is its last neighbor then
14: Send back ACK with channel hopping decision;
15: Set new receiving channel and Pending = 0;
16: else
17: Send back ACK with pending channel hop;
18: end if
19: else
20: Send back ACK;
21: end if
22: end if
23: if received immediate channel hop then
24: Set new sending channel and set flag = 1;
25: end if
26: if received pending channel hop then
27: Save new sending channel and set flag = 0;
28: end if
29: if transmitting packet then
30: if flag = 1 then
31: Send packet using recipient’s channel and wait a small time for ACK;
32: else
33: Send packet using recipient’s new channel and wait a small time for ACK;
34: if ack received then
35: Set flag = 1;
36: else
37: Resend packet using recipient’s last channel and wait a small time for ACK;
38: end if
39: end if
40: end if
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channels. While this approach introduces some overhead compared to a single-channel pro-
tocol, we expect this overhead to be low in practice: by its nature, HAN traffic will often be
dominated by (unicast) data collection and actuation packets.

3.3.6 Handling Channel Desynchronization

When channel conditions degrade, reliability may drop so far that the coordination messages
described above are lost. Under this situation, a node and one or more of its senders may
become desynchronized. ARCH uses two thresholds to detect these conditions: T1 on the
receiver side, which denotes the maximum waiting time between two packets; and N on the
sender side, which denotes the maximum number of allowed packet retransmissions. T1 and
N are selected so that the receiver’s timeout is longer than the sender’s timeout, for reasons
discussed below.

Based on these thresholds, ARCH uses the following procedure to detect and handle desyn-
chronization. Let t denote the time since the receiver received its last packet and n denote
the number of times the sender has retransmitted the current packet. When either threshold
is exceeded (t > T1 or n > N), the node reverts to the default channel3. Because the receiver
has the longer timeout, the sender will already have reverted to the default channel by the
time the receiver arrives. The receiver may then initiate resynchronization with the sender.

A subtle complication is that desynchronization may be falsely detected. It is possible that
the two nodes indeed switched to the same channel; however, this new channel was too noisy
for communication, and hence the nodes falsely believed that they were desynchronized.
Thus, ARCH has a policy that nodes exchange their previous channels when resynchronizing.
If the channels do not match, then there was indeed a channel synchronization problem, and
the nodes proceed to resynchronize on the receiver’s previously-selected channel. However,
if the channels match, then the nodes did successfully resynchronize on the new channel but
were unable to communicate. In this case, the receiver selects an entirely new channel (since
the previous channel was too unreliable) and repeats the channel-hopping procedure.

3If multiple default channels are specified, the node reverts to the channel spatially furthest from its last
successful synchronization.
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A salient feature of this scheme is that it provides an upper bound on disconnection time.
This feature is important to home automation applications where, for example, extended
disconnections in a thermal stack could cause a room to reach uncomfortable temperatures.

3.4 Evaluation

To validate the efficiency of ARCH in alleviating packet loss through channel-hopping, we
performed a series of simulation-driven and real-world experiments. First, we carried out two
simulator-based microbenchmarks driven by data traces collected in ten different apartments.
These microbenchmarks measure the efficacy of ARCH’s opportunistic channel selection
scheme and ETX-based link estimator, respectively. We then measured ARCH’s performance
through a series of real-world macrobenchmarks. For these experiments, we deployed an
implementation of ARCH on top of the TinyOS 2.1 operating system [4], and measured its
performance in real-world apartments under various application scenarios. These scenarios
range in complexity from a basic always-on, single-hop network to a multi-hop network
deployed with a low-power listening MAC layer.

3.4.1 Simulator-Based Microbenchmarks

Our microbenchmark experiments were carried out in a C++ simulator environment, and
are driven by two sets of link quality data previously collected for [106]. Both data sets
were collected in 10 real-world apartments using networks of Tmote Sky and TelosB [88]
motes. A single transmitter node deployed in each apartment broadcast packets to multiple
recipient nodes, which recorded the sequence number of all successfully decoded packets.
Every 5 minutes, the transmitter node cycled over each of the 16 channels defined by the
IEEE 802.15.4 standard. This process repeated for 24 hours in each apartment during the
residents’ normal activity.

For the first data set, the transmitter used a data rate of 100 packets per channel every 5
minutes and no packet retransmissions. This provided high-granularity PRR data, which we
used to evaluate ARCH’s channel selection policy. For the second data set, the transmitter
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used a reduced data rate of 1 packet per channel every 5 minutes with packet retransmissions.
This data set gave us a direct measurement of ETX, which we used to validate ARCH’s link
estimation scheme. We will now describe both microbenchmarks in detail.

Channel Selection Scheme

Our first group of simulations isolates the performance of ARCH’s opportunistic channel
selection scheme by comparing ARCH against two widely-used channel diversity schemes.
First, the fixed channel scheme uses the default channel of 15 (which had the highest average
PRR of all links in our data traces) for all links in all apartments. Second, the channel con-
figuration scheme selects the channel with the best performance during the first 30 minutes
of the empirical study (emulating a protocol which collects extensive link quality while boot-
strapping). To further isolate the performance of ARCH’s channel selection scheme from
its channel estimation routines, we also performed a series of experiments using a random
channel-hopping variant of ARCH. This variant detects channel degradation in the same
way as the unmodified ARCH, but responds to degradation by hopping to random channels.
Finally, we compare ARCH against an optimal channel-hopping algorithm. This optimal
scheme retroactively processes the entire dataset to find the best possible channel hopping
decisions. By its nature, the optimal scheme provides an upper bound on performance, but
cannot actually be implemented online.

The simulations were configured as follows. ARCH’s Cℎannel Pool was set to use all 16
channels, with the default channel set to 15. For the probabilistic channel selection, we set
k = 1 and selected ci to be the difference between the two channels’ numbers divided by
100. We conducted two sets of experiments with different PRR thresholds: 80% and 90%.
To rule out the effects of the channel estimator, we replaced ARCH’s ETX estimator with
ground-truth PRR data over 5 minute windows.

Figure 3.1(a) plots the CDF of the nodes’ success, defined as the proportion of time that the
node met the PRR threshold of 80%. On average, ARCH achieves 18% higher success than
the fixed channel and channel configuration schemes. In addition, ARCH’s channel selection
and blacklisting schemes allow it to improve on the random channel selection scheme by
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(a) CDF of proportion of time an 80% PRR threshold was met.

(b) CDF of proportion of time a 90% PRR threshold was met.

Figure 3.1: A comparison of node success (PRR > threshold) under various channel selection
schemes. Results were measured under simulation using experimentally-collected PRR traces
from 10 apartments.
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Figure 3.2: CDF of number of channel hops per day under ARCH and optimal channel
selection schemes. Results were measured under simulation using experimentally-collected
PRR traces from 10 apartments.

9%. Indeed, we note that ARCH comes within 6% of upper bound provided by the optimal
scheme.

Increasing the PRR threshold to 90% provides similar results, as shown in Figure 3.1(b).
Under ARCH, the links have a median success rate of 88%; in contrast, under the fixed
channel and channel configuration schemes, the median success rates are 72% and 56%,
respectively. Again, ARCH improves on the random channel selection scheme by 8%, coming
within 12% of the optimal scheme’s upper bound.

As shown in Figure 3.2, ARCH achieves this degree of reliability with relatively few channel
hops. At most 25 channel switches are needed per link per day to meet the 90% PRR
requirement, with a median of fewer than 10.

Channel Quality Estimator

Next, we wished to explore the ability of ARCH’s channel estimator to accurately predict
long-term channel conditions. For these experiments, we used the second set of data traces,
which were collected at a reduced data rate of 1 packet/5 minutes and retransmissions
enabled. We processed these traces through ARCH’s estimator to produce a series of binary

46



www.manaraa.com

Figure 3.3: False-positive and false-negative rates of ARCH’s channel estimation scheme.
Results were measured under simulation using experimentally-collected ETX traces from 10
apartments.

channel quality predictions. Specifically, given a sliding window of m minutes’ worth of
traces, the estimator produced a series of binary decisions indicating whether the channel
has failed. We then generated a series of ground-truth data by comparing the ETX traces
against numerous fixed thresholds.

Figure 3.3 compares ARCH’s predictions for channel reliability against the ground truth
data. Specifically, the figure plots the false positive (i.e., channel failure predicted when
no failure actually occurred) and false negative (i.e., no channel failure predicted when the
channel had actually failed) rates with various ETX thresholds and window sizes. We observe
that an ETX threshold of 2 and window size of 15 minutes (i.e., 3 packets) achieves false
positive and negative rates below 20%.

Figure 3.4 confirms that these parameters are ideal, even over a wider range of thresholds
and window sizes. A threshold of 2 and window size of 15 minutes achieved the lowest
ETX (an average of 1.66 transmissions) and total channel switches (5). For comparison,
a fixed-channel scheme run over the same data trace produced an average ETX of 2.38
transmissions.
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(a) Average ETX with different ETX thresholds and window sizes.

(b) Number of channel switches with different ETX thresholds and window
sizes.

Figure 3.4: The effect of various thresholds and window sizes on the performance of ARCH’s
channel estimation scheme. Results were measured under simulation using experimentally-
collected ETX traces from 10 apartments.
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ROM (bytes) RAM (bytes)
Fixed channel 23776 1218
ARCH 24256 1244

Table 3.1: ROM and RAM usage comparison of our multi-hop macrobenchmark application.

3.4.2 Real-World Macrobenchmarks

To evaluate ARCH’s real-world performance, we performed a series of data collection mac-
robenchmarks in real-world apartments. The experimental setup is similar to the experiments
used to gather the data traces above. However, rather than collecting data on all channels,
we deployed a full TinyOS implementation of ARCH below our application logic and allowed
ARCH to automatically select the channel usage.

Owing to its lightweight design, ARCH introduces very little code size overhead. Table 5.1
shows the program ROM and RAM usage for the benchmark application described in Sec-
tion 3.4.2, as reported by the TinyOS toolchain. Compiling the application with ARCH
enabled only consumes 480 extra bytes of ROM and 26 bytes of RAM compared to the same
application compiled with a fixed channel assignment. (For comparison, the MSP430F1611
MCU used by the TelosB and Tmote Sky motes provides 48 kilobytes of flash ROM and 10
kilobytes of RAM.)

Per the previous simulation results, we configured ARCH’s channel quality predictor to use
an ETX threshold of 2 and window size of 3 packets. As with the second set of simulations, we
use a data rate of 1 packet/5 minutes, and enabled packet retransmissions. This configuration
emulates the behavior of typical HAN applications, which feature relatively low data rates
but require reliable data delivery. For example, a wireless HVAC system typically requires
1 valid temperature reading from each sensor every 5 minutes to maintain a comfortable
temperature level. Each experimental run lasted 24 hours.
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Single-Hop Data Collection

Our first experiment measured ARCH’s performance under a simple single-hop data collec-
tion application. In this scenario, one node was designated as a data sink. The remain-
ing nodes produced packets at a rate of 1 packet/5 minutes and attempted to deliver the
packet directly to the sink. For the purposes of this experiment, we used TinyOS’s de-
fault CSMA/CA MAC layer (i.e., no duty cycling). As a baseline, we also carried out the
experiment with every node fixed to channel 26.

Figure 3.5(a) plots the CDF of the average ETX for each of the experiment’s 30 links. ARCH
reduces the ETX by a median of 42.3% compared to a fixed-channel scheme. Figure 3.5(b)
breaks down ARCH’s improvements on a per-link basis. In many cases, the improvements
are quite notable; ARCH reduced the transmissions by more than half for 11 of the 30 links,
and in one extreme case reduced transmissions by 97.5%. Even in the worst case, ARCH
performs comparably with the fixed-channel scheme, with a slight ETX increase of 0.7%.

Figure 3.6(a) compares the delivery rate (i.e., the proportion of packets successfully delivered
after any number of retransmissions) of ARCH and the fixed-channel scheme. While ARCH
does not achieve 100% delivery under all links, it does so for 26 of the 30 links. In comparison,
the fixed-channel scheme achieves a 100% delivery rate for only 21 links. ARCH also achieves
a much higher minimum delivery rate (54.2% vs. 17.0%) than the fixed-channel scheme.

Figure 3.6(b) illustrates the number of channel desynchronizations detected for each corre-
sponding link in Figure 3.6(a). (The links are sorted in the same order as in Figure 3.6(a)
so that a direct comparison may be made.) Although some of the links experience many
desynchronization events, ARCH is still able to maintain a high delivery rate. For exam-
ple, link 4 experienced over 100 desynchronizations during the 24-hour experimental run,
but nevertheless achieved a delivery rate of close to 100%. This indicates that ARCH’s
desynchronization-handling mechanism, as described in Section 3.3.6, is indeed effective at
resolving these events. We note an outlier in link 1, which desynchronized more than 200
times throughout the experiment and achieved a delivery rate of only 54.2%. These statistics
reflect the fact that the link was under such harsh, persistent interference that the recipient
struggled to locate a single good channel. Nevertheless, as noted above, ARCH is still able
to achieve a 2.2× improvement in delivery rate on this link over the fixed-channel scheme.
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(a) CDF of average ETX of 30 links.

(b) Normalized average ETX (ARCH’s divided by fixed-channel’s ETX) of
all links.

Figure 3.5: Comparison of ETX during single-hop data collection experiments under ARCH
and fixed-channel schemes.
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(a) A comparison of each link’s delivery rate.

(b) The number of channel desynchronization events for
each link.

(c) Overhead of ARCH in terms of channel switches.

Figure 3.6: A per-link breakdown of the performance under a single-hop data collection
experiment. For comparison, all results are sorted by the link’s delivery rate under a fixed-
channel scheme.
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Figure 3.6(c) presents the overhead of ARCH in terms of channel switches. As with the
simulator experiments, we observe that the number of channel switches is quite low. 18 links
in the experiment require 10 or fewer switches per day to maintain reliability. Three links
require more than 100 switches per day; this was due to repeated channel desynchronization
events caused by strong interference at the receivers. Comparing Figures 3.6(a) and 3.6(c),
we note that ARCH is effective even on these links with severe interference. On these three
links, ARCH improved the delivery rate from 2.5×–5.6× compared to the fixed-channel
scheme.

To further explore ARCH’s real-world performance, we repeated the experiment using the
BoX-MAC-2 [81] low power listening MAC layer. BoX-MAC-2 is a commonly-used proto-
col which automatically duty-cycles the radio in order to reduce nodes’ idle listening cost.
In order to directly measure the effect of automatic packet retransmissions, we performed
these experiments twice: once with retransmissions disabled, and once with retransmissions
enabled. In addition to the previously used fixed channel baseline, we added the channel
configuration baseline described in Section 3.4.1. Due to time constraints, the experiment
was reduced in size from 30 links among 10 apartments to 8 links in one apartment.

The results are plotted in Figures 3.7(a) and 3.7(b), respectively. Without retransmissions,
we see that ARCH has uniformly higher delivery rates than either of the baselines, achiev-
ing an average delivery rate of 85%. With retransmissions, the delivery rate increases to
99%. Similar gains are seen for the fixed-channel and channel configuration schemes when
retransmissions is enabled; however, as shown in Figure 3.7(c), they pay a much higher
retransmission cost to achieve this level of reliability. Over the 24 hour experiment, the
fixed-channel and channel configuration schemes need to transmit 1.6× and 4.1× as many
packets as under ARCH, respectively, to maintain high reliability. Moreover, from Figure
3.7(b), we see that link 6 failed under the fixed channel scheme: even with retransmissions
enabled, it achieved a PRR of only 51%. Again, this observation illustrates that retransmis-
sion alone is not sufficient for long-term reliable operation under significant interference and
environmental dynamics.
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(a) Delivery rate of 8 links without retransmissions.

(b) Delivery rate of 8 links with retransmissions.

(c) Number of transmitted packets with retransmissions.

Figure 3.7: Performance comparison of ARCH, fixed channel, and channel configuration
schemes under single-hop data collection when using BoX-MAC-2.
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Figure 3.8: 3D diagram of sensor placement and collection tree for the multi-hop experiment.
Nodes (circles) are laid out similarly on two floors, with a sink (star) in the basement. Hollow
circles indicate relays.

Multi-Hop Data Collection

Finally, we measured ARCH’s performance under a multi-hop routing scenario. For this
experiment, we deployed 10 sensor nodes between two floors of an apartment, as shown in
Figure 3.8; an 11th node was deployed in the building’s basement as the data sink. In order
to isolate ARCH’s performance from the decisions of the routing layer, our experiment used
a fixed routing topology. 8 nodes were designated as leaf nodes and attempted to deliver
1 packet/5 minutes through fixed paths to the sink. 2 additional nodes in the network’s
interior acted as relays only, and did not produce data packets of their own.

In order to understand ARCH’s effect on energy usage at a lower level, we instrumented
the nodes’ CC2420 radio stack to keep a cumulative count of how long the radio hardware
was powered on. As with the previous experiment, retransmissions and BoX-MAC-2 were
enabled, and a second run using a fixed-channel (channel 26) scheme was performed as a
baseline. Each experimental run was carried out for 24 hours.

Figure 3.9 compares the end-to-end delivery rate under ARCH and the fixed-channel scheme.
As with the previous benchmark, the use of retransmissions enables uniformly high delivery
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Figure 3.9: The delivery rate of all 8 multi-hop paths.

rates under both schemes. ARCH and fixed-channel delivered a minimum of 99.3% and
95.0% of their packets over each path, respectively.

However, as shown in Figure 3.10, the fixed-power scheme incurred a much higher energy
burden to achieve this degree of reliability. Figure 3.10(a) compares the average ETX of
each of the 10 links in the network. We observe that the fixed-power scheme required an
average of 1.8× as many transmissions as ARCH, and up to 6.1× in the most extreme case.
Indeed, no link performed worse with ARCH than the fixed-channel scheme. Consequently,
ARCH proved to be significantly more energy-efficient. For each node, Figure 3.10(b) plots
the ratio of radio usage between the two experimental runs. ARCH reduced the amount of
time the radio was powered on by an average of 31.6%, representing a significant savings in
energy consumption.

As shown in Figure 3.11, ARCH achieved this improvement with low overhead. Each link
required only 2–11 channel hops during the 24-hour experiment, with a mean of 9.6 hops.
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(a) The average ETX of all 10 links.

(b) The normalized radio usage of all 11 nodes under ARCH.

Figure 3.10: A comparison of energy efficiency between ARCH and fixed-power under multi-
hop data collection.
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Figure 3.11: ARCH’s overhead in terms of channel switches under multi-hop data collection.

3.5 Conclusion

Achieving reliable HAN performance in real-world residential settings can be challenging,
due to their highly complex and dynamic wireless environments. Based on empirical study
of these environments, we proposed the Adaptive and Robust Channel Hopping (ARCH)
protocol: a lightweight yet effective channel hopping protocol that can handle the dynam-
ics of channel conditions in apartments using a handful of channel hops per link per day.
ARCH has several key features. First, ARCH is an adaptive protocol that channel-hops
based on changes in channel quality (specifically, the Estimated Transmission Count, or
ETX) observed in real time. Second, ARCH is a distributed protocol that hops channel
on a per-link basis in order to avoid localized sources of channel failure. Third, ARCH
is designed to be robust and lightweight. ARCH uses a practical hand-shaking approach
to handle channel desynchronization and an efficient sliding-window scheme that does not
involve expensive calculations or modeling and can be reasonably implemented on memory-
constrained wireless sensor platforms. In a multi-hop data collection application, ARCH
introduced an overhead of only 480 bytes of ROM and 26 bytes of RAM. Fourth, ARCH in-
troduces minimal communication overhead for applications where packet acknowledgements
are already enabled. Trace-driven simulations and real-world macrobenchmarks demonstrate
the efficacy of ARCH’s design. Single-hop experiments reveal a median decrease in packet
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retransmissions of 42.3% and a 17% increase in the proportion of links with perfect delivery
rates. ARCH provides even greater benefit for the most challenging of links, increasing the
minimum delivery rate in our experiments by a factor of 2.2×. Further multi-hop experi-
ments revealed a 31.6% average reduction in radio usage, representing a significant savings
in energy. ARCH’s lightweight design enables these dramatic reliability improvements with
relatively few channel hops; most links required 10 or fewer channel hops per day.
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Chapter 4

Energy-Efficient Low Power Listening for
Wireless Sensor Networks in Noisy
Environments

4.1 Introduction

Clear Channel Assessment (CCA) is a fundamental mechanism in MAC protocols for wireless
networks. A CCA check 4 samples the energy level in the wireless channel and considers
the channel busy if the energy level is above a threshold, or idle otherwise. CCA has been
commonly used for two important (and orthogonal) purposes. First, it has been used by
CSMA/CA protocols to avoid collisions on shared wireless channels, by sampling the channel
for activity just before transmission. Second, CCA has been used in Low Power Listening
(LPL), a popular MAC-layer approach that enables the radio to operate at low duty cycles.
Under LPL, every node periodically wakes up to perform CCA. It then stays awake to
receive packets if the CCA check detects activity in the wireless channel, or goes back
to sleep immediately otherwise. Due to its simplicity and effectiveness, LPL has been a
popular approach to energy-efficient MAC protocols in Wireless Sensor Networks (WSNs).
A multitude of LPL-based MAC protocols has been developed in recent years [22, 81, 87],
and LPL has been implemented by many radio drivers inside sensor operating systems such
as TinyOS [4] and Contiki [7].

4CCA, carrier sense and energy detection are used as synonymous in this Chapter, as supported by [91].
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While the effect of CCA on collision avoidance has been well studied in the literature, its im-
pact on LPL, particularly in noisy environments such as residential and office environments,
has received relatively little attention. Applications deployed in noisy wireless conditions are
susceptible to frequent false wakeups : noise may be detected as legitimate activity on the
channel, causing the node to remain awake even when no transmissions occur. False wakeups
may significantly increase the duty cycle and energy consumption of the nodes, as shown by
our empirical studies in residential environments (see Section 4.4). This limitation of LPL
protocols is becoming increasingly significant as more and more WSNs are being deployed in
residential environments, where co-existing wireless devices and electromagnetic equipments
cause prevalent and highly variable noise.

To address this important problem, we propose a novel approach that dynamically adjusts
the CCA threshold, i.e., the energy level threshold used to decide if a channel is active.
This approach is motivated by the key observation that nodes may effectively reduce false
wakeups by choosing a threshold above the background noise level, but below the level of
real transmissions. Specifically, the main contributions of this work are three-fold:

1. An empirical study in residential environments that demonstrates the potential benefits
of adaptive CCA control based on both normal channel conditions and controlled
802.11n traffic;

2. Adaptive Energy Detection Protocol (AEDP), an adaptive protocol that dynamically
adjusts a node’s CCA threshold to improve network reliability and duty cycle based
on application-specified bounds;

3. Discovery of significant shortcomings in the implementation of CCA checks in TinyOS
2.1.1 5 caused by improper selections of key radio parameters, and a systematic method-
ology to tune these parameters in order to enable efficient CCA checks.

In contrast to previous studies on adjusting the CCA threshold to better avoid collisions in
both 802.11 [21] and 802.15.4 [18, 19, 63, 129] networks, this Chapter investigates the CCA
threshold’s role in waking up nodes, with the goal to mitigate the false wakeup problem
associated with LPL; to our knowledge, it represents the first systematic study of the CCA

5The shortcomings still exist in TinyOS 2.1.2 officially released on August 20, 2012.
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threshold’s role in the effectiveness of LPL. The uses of CCA for collision avoidance in
CSMA/CA and wakeup in LPL are orthogonal and complementary to each other, as CCA
is being used at different times for different goals. Indeed, both forms of CCA adjustment
could be deployed simultaneously, by simply maintaining separate thresholds for collision
avoidance and LPL.

The remainder of this Chapter is organized as follows. Section 4.2 compares our approach
with related works. Section 4.3 describes an overview of LPL. Section 4.4 presents an empir-
ical study into the effect of noise on LPL behavior, and explores the use of CCA thresholds
to control the associated false wakeup problem. Section 4.5 details the AEDP protocol for
dynamically adjusting a node’s CCA threshold in order to minimize false wakeups. Sec-
tion 4.6 describes the implementation of AEDP on the TelosB mote platform and analyzes
the impact of radio parameters on the effectiveness of CCA. Section 4.7 presents an empir-
ical evaluation of AEDP in both controlled tests and real-world environments. Finally, we
conclude the Chapter in Section 4.8.

4.2 Related Work

Traditionally, CCA functionality has been used in CS-MA/CA MAC protocols to avoid
collisions on shared wireless channels. A sender performs CCA before transmission. It
proceeds with the transmission if the CCA check does not detect channel activity; otherwise
it backs off to avoid colliding with an on-going transmission. Numerous studies have explored
the impact of the CCA thresholds used for collision avoidance on both 802.11 networks and
WSNs [18,19,21,63,129]. Bertocco et al. [18] shows that the CCA threshold is critical, as false
negative channel activity detections result in collisions and false positives cause increased
latency. Kiryushin et al. [63] studies the real-world impact of CCA thresholds in avoiding
packet collisions. Chintalapudi et al. [27] shows that a poor energy detection scheme can
lead to significant overhead for listening to the channel and switching the radio between send
and receive modes, which may take hundreds of microseconds. Boano et al. [19] shows that
tuning the CCA threshold at run time can improve the robustness of existing MAC protocols
under interference. Yuan et al. [129] presents that dynamically adjusting CCA threshold
can substantially reduce the amount of discarded packets due to channel access failures.
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Brodsky et al. [21] presents an opposite conclusion based on theories of radio propagation
and Shannon capacity and shows that it is possible to choose a fixed CCA threshold which
performs well across a wide range of scenarios since carrier sense performance is surprisingly
close to optimal for radios with adaptive bitrate. All these works focus on the impact of
CCA on collision avoidance in transmissions rather than its use for wakeup in LPL-based
MAC protocols.

In contrast to previous studies on CCA for channel avoidance, this Chapter investigates
the CCA threshold’s role in avoiding the false wakeup problem associated with LPL; to
our knowledge, it represents the first systematic study of the CCA threshold’s role in the
effectiveness of LPL in achieving low duty cycles in WSNs, especially in noisy environments
where traditional LPL protocols are vulnerable to false wakeup problems. Our work is
therefore orthogonal and complementary.

Recently, receiver-initiated MAC protocols have been proposed to avoid the false wakeup
problem. Receiver-initiated MAC protocols such as [32, 118] require recipients to transmit
probe packets indicating that they are ready for packet reception. As our experiments
presented in Section 4.7.5, AEDP is more energy efficient at low data rates than the state-
of-the-art receiver-initiated MAC protocol A-MAC [32], as AEDP avoids the overhead of the
probe packets. On the other hand, A-MAC is more energy efficient than AEDP for high
data rate applications, where the cost of sending these probe packets are offset by reduced
overhead for transmissions. Our work is therefore an alternative sender-initiated approach
that is complementary to receiver-initiated MACs for applications with different data rates.

ContikiMAC [31] addresses the false wakeup problem with two targeted optimizations. First,
it performs two CCA checks spaced slightly apart, allowing it to identify phenomenon too
short to be an 802.15.4 transmission. Second, it performs a “fast sleep" optimization that
reduces the cost of false wakeups, by detecting patterns of activity and silence which cannot
belong to ContikiMAC transmissions. In our testing, we found that our approach’s CCA-
threshold-adjustment can effectively avoid false wakeups without these optimizations. Since
our approach requires only a single CCA check, it induces lower energy cost in low duty-cycle
cases where nodes rarely need to wakeup to receive packets. Nevertheless, these approaches
are orthogonal, and in particularly challenging environments could be combined to reduce
both the likelihood and the energy overhead of false wakeups.
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There has been increasing interest in studying the impact of interference on WSNs and
enhancing the robustness of MAC protocols in noisy environments. Srinivasan et al. [115]
examines the packet delivery behavior of two 802.15.4-based mote platforms, including the
impact of interference from 802.11 and Bluetooth. Liang et al. [70] measures the impact of
interference from 802.11 networks on 802.15.4 links, proposing the use of redundant headers
and forward error correction to alleviate packet corruption. These studies focus on improving
the reliability of transmission and do not deal with the false wakeup problem to improve
energy efficiency.

4.3 Overview of LPL

Low power listening (LPL) is a common MAC-layer technique for reducing energy consump-
tion in WSNs [87]. Under LPL, nodes periodically wakeup to perform CCA, i.e., to briefly
sample the wireless channel for activity. If energy is detected on the channel, the node
remains awake in order to receive a packet (or until some timeout). Otherwise, the node
quickly goes back to sleep. To minimize overhead when the network is idle, these peri-
odic wakeups are not synchronized across nodes: that is, the recipient knows the recipient’s
wakeup interval but not its wakeup time. Accordingly, before transmitting a packet, the
transmitter sends a preamble stream at least as long as the recipient’s wakeup interval; this
ensures that the recipient will sample the channel during the preamble. After the preamble,
the sender and recipient exchange data packets.

Later LPL-based MAC layers such as X-MAC [22] modify this approach by inserting desti-
nation address information and periodic gaps in the preamble stream. When a node wakes
up, it may decode the destination address and see if it is the packet’s intended recipient. If
so, it uses the gaps in the preamble to send an acknowledgment to the sender, which will in
turn immediately transmit the payload. If not, the node may go back to sleep immediately.
These enhancements significantly reduce the cost of waking up for a packet intended for
another node, while also reducing the average cost of unicast packet transmissions by half.
BoX-MAC-2 [81] further refines this approach by transmitting the entire data packet in place
of the destination address, eliminating the need to explicitly exchange the payload after the
recipient has ACKed the preamble.
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Quickly and accurately assessing whether the channel is active is a critical component of
a LPL-based MAC layer. Modern radios, including all 802.15.4-compliant hardware [57],
provide CCA functionality that assists with this procedure. A common method for radios to
implement CCA is to provide a digital readout (often a dedicated pin) indicating whether
the channel’s energy level currently exceeds some threshold. This particular implementation,
known as energy detection, is commonly found in low-power radios such as the Chipcon
CC2420 and has been identified as a critical feature for WSN hardware design [33]. After
waking up the radio, the microcontroller may sample the CCA pin in a tight loop; the node
remains awake for packet reception if some minimum number of samples are positive.

4.4 Empirical Study

This section describes a series of empirical studies that provide the motivation and insights
for the design of AEDP. We first measure the false wakeup problem in office and residential
environments, followed by a systematic study on the impact of CCA’s energy detection
threshold on wakeups in LPL.

4.4.1 Effects of Wireless Noise

Existing literature on LPL-based MAC layers emphasizes the ability to run applications at an
extremely low duty cycle, sometimes as low as 1% [87], in exchange for moderately increasing
the cost of packet transmissions. This tradeoff makes LPL well-suited for applications with
low-to-moderate data rates. However, noise from other wireless devices can have a dramatic
(and often unanticipated) impact on nodes’ duty cycle, significantly reducing system lifetime.

Radios based on the 802.15.4 standard operate in the unlicensed 2.4 GHz band shared by
many other devices. Energy detection simply looks for the presence of some signal on the
wireless channel; it does not distinguish between the system’s own traffic and noise from
other devices. To illustrate how a false-negative wakeup can considerably increase the cost
of a CCA check, we deployed a TelosB mote [30] running TinyOS 2.1.1 [4] in an office
environment. The TelosB mote was configured to use the BoX-MAC-2 LPL-based MAC

65



www.manaraa.com

layer, TinyOS’s de facto standard LPL implementation. BoX-MAC-2 was in turn configured
with a wakeup interval of 2 seconds: i.e., the motes sleep for 2 seconds between sampling
the channel for activity. In order to capture the effects of wireless noise, we configured the
CC2420 radio to use channel 18, which overlaps with a campus-wide 802.11g network. All
other MAC layer and radio parameters were left to their respective defaults.
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Figure 4.1: Oscilloscope traces comparing a TelosB node’s energy consumption during a
negative (idle) and false-positive (detected) energy detection check.

Figure 4.1 shows the energy consumption of this mote when performing a single energy
detection check, as captured with an oscilloscope. When the channel is idle, the radio is
powered on for 19.0 ms; in contrast, when the channel is occupied, the false wakeup causes
the radio to remain powered on for 103.4 ms until it eventually times out. Similar results
were observed in [32], which found that false wakeups increased the current consumption of
a CCA check by 17.3×.

An equally important question is how often wireless noise will cause these false wakeups
to occur in real-world environments. To measure this phenomenon, we deployed four pairs
of TelosB motes on orthogonal channels (11, 16, 21, and 26, respectively) in five different
apartments located in different neighborhoods in St. Louis. The motes were deployed for 24
hours in each apartment during the residents’ normal activities. One mote in each pair was
configured to transmit 1 packet every minute, and the BoX-MAC-2 MAC layer configured
with a wakeup interval of 2 seconds. We augmented TinyOS’s CC2420 radio stack to track
the result of each CCA check and the radio “on time”, i.e., the cumulative total time the
radio was active during the entire experimental run. The latter data was in turn used to
compute each mote’s duty cycle. For the purposes of this experiment, the mote’s onboard
CC2420 was again configured with the hardware-default CCA behavior, setting its CCA pin
based on an energy threshold of −77 dBm.
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Figure 4.2: The false wakeup rate of each recipient mote in each apartment.

Figure 4.2 plots the false wakeup rate (the proportion of CCA checks resulting in wakeup
but no packet reception) of each node in the experiment. From the receiver’s wakeup interval
and the sender’s data rate, we expect a nominal duty cycle of 0.17%. However, the false
wakeups caused by environmental noise result in substantially higher duty cycles, with an
average duty cycle of 1.4% across all four tested channels in all five apartments. In the two
worst cases — channel 16 in apartment 5 and channel 26 in apartment 2 — false wakeup
rates of 45% resulted in greatly inflated duty cycles of 2.8%.

4.4.2 Effects of CCA Threshold

We propose to address the false wakeup problem by adjusting the CCA threshold: that is,
the specific energy level used as a binary threshold to determine whether a node should
remain awake. In the context of LPL, setting the CCA threshold too low will cause nodes
to wakeup to receive non-existent packets. Setting the threshold too high may cause nodes
not to wakeup during transmissions, forcing the sender to repeatedly retransmit. We note
that adjusting the CCA threshold for LPL has no effect on the receiver’s ability to decode
packets, so long as the threshold is low enough to wakeup the receiver. Hence, link reliability
will only be affected if the threshold is high enough to cause a false-negative energy detection
(i.e., a node fails to stay awake to receive a legitimate packet).
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(a) False wakeup rate under office occupants’ normal activities.
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(b) False wakeup rate under controlled (5 Mbps UDP) 802.11n traffic.

Figure 4.3: The effects of tuning the CC2420’s wakeup threshold on the motes’ false wakeup
rate, subject to office occupants’ normal activities and controlled 802.11n traffic. The motes
were located 3–15 ft away from the 802.11n router, and were configured to use a threshold
ranging from −77 to −47 dBm.
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As discussed earlier, the CCA threshold also plays a role in the context of collision avoid-
ance. However, adjusting the CCA threshold has a different effect in the context of collision
avoidance, where it directly affects the sender rather than receivers. Setting the threshold
too low encourages spurious backoffs, while setting the threshold too high may introduce
packet losses from otherwise-avoidable collisions. To distinguish the CCA threshold used by
the receiver for LPL from the CCA threshold used by the sender in CSMA/CA, we hence-
forth refer to the former in this Chapter as the wakeup threshold. This Chapter focuses
on reducing false wakeups by manipulating the wakeup threshold used for LPL. We do not
change the CCA threshold used for transmission, an important but orthogonal problem that
has been well-studied in literature.

We perform a set of controlled tests in an office environment to investigate the potential
energy savings from adjusting the wakeup threshold, we deployed five groups of four TelosB
motes on channel 16 at varying distances (3–15 ft) from a pair of 802.11n devices (access
point+MAC pro laptop) operating on 2.4 GHz band that overlaps with 802.15.4. Each
experimental run was carried out for one hour; as before, BoX-MAC-2 was configured with
a wakeup interval of 2 seconds. In contrast to the previous experiments, which used the
radio-default CCA threshold of −77 dBm, each mote in a group was configured to use one
of four different thresholds (−77, −67, −57, and −47 dBm). Signal generated by motes
may become part of the background noise when its strength is lower than recipients’ CCA
threshold. We intentionally stop motes from generating real transmissions in this set of tests,
thus we can treat the total wakeup rate as the false wakeup rate.

Figure 4.3(a) plots the recipients’ false wakeup rate under the office occupants’ normal ac-
tivities in real-world environment. Figure 4.3(b) plots the false wakeup rate when using
LanTraffic V2 [8] to generate a controlled stream of 5 Mbps UDP traffic through the pair of
802.11n devices. Two important conclusions may be drawn from these figures. First, tuning
the wakeup threshold provides a powerful opportunity for conserving energy. We observe
that the false wakeup rate drops dramatically when increasing the threshold from the ra-
dio default of −77 dBm. Under real-world activity as shown in Figure 4.3(a), the default
threshold incurs a false wakeup rate of 14–33%. In comparison, this rate may be reduced
to 3–12% by moderately increasing the threshold by 10 dBm, or to 0% by increasing the
threshold by 30 dBm. The effects of tuning the threshold are even more pronounced under
the higher-bandwidth controlled experiments, as shown in Figure 4.3(b). At a threshold
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of −77 dBm, the nodes experience a false wakeup rate no lower than 97.8%, regardless of
distance from the pair of 802.11n devices. This rate drops to 0–4% for two of the distances
at a threshold of −57 dBm, and to 0% for all distances at a threshold of −47 dBm. Second,
the “best” wakeup threshold is highly dependent on external factors such as the 802.15.4
nodes’ vicinity to other devices, and the other devices’ usage patterns and signal strength.
Comparing Figures 4.3(a) and 4.3(b), we see that increasing the threshold from −77 dBm
to −67 dBm significantly reduces the false wakeup rate under normal activities. However,
under a sustained 5 Mbps UDP stream, a comparable threshold increase has virtually no
impact on the false wakeup rate.

We also used motes to perform a series of measurements on signal strength of external
interference generated by several real-world 802.11 applications as well as the LanTraffic V2
with various speeds. We observed that noise varies from application to application and over
time for a given application depending on the distance from interference source.

Hence, picking an appropriate wakeup threshold is not simply a matter of choosing a more
aggressive default setting. The minimum threshold needed to avoid noise varies from setting
to setting, and even over time depending on the occupants’ activities. Moreover, selecting
too high of a threshold will intuitively cause the receiver to stop waking up for legitimate
transmissions, decreasing network reliability.

4.5 Protocol Design

In this section, we present the design of our AEDP. At a high level, AEDP tries to meet
application-specified constraints on network reliability and wakeup rate. The desired net-
work reliability is specified by the desired ETX, ETXtℎresℎold, where ETX is the expected
number of transmissions needed to successfully send a packet to its destination. The de-
sired wakeup rate, WRtℎresℎold can be determined based on the application data rate (and
hence the corresponding true wakeup rate) plus a small margin for false wakeups allowed by
the application. When it is not possible to meet both constraints, network reliability takes
precedence, as it is typically more critical than lifetime constraints. We set a default value of
ETXtℎresℎold to be 5 and a default value of WRtℎresℎold to be 5 times of data rate according
to the typical low data rate home automation systems.
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AEDP maintains three variables at run time: ETX, WR, and WRL. ETX is the average
ETX value over a sliding window (default window size is 15 minutes). WR is the wakeup
rate within the same sliding window. WRL is the cumulative wakeup rate over the whole
application lifetime. Note that WRL reflects the long-term wakeup rate that affects the
battery life of the node.

At runtime, AEDP periodically updates these three variables ETX, WR, and WRL and
compares their values against ETXtℎresℎold andWRtℎresℎold. It then computes a new wakeup
threshold T based on four different cases, described below.

1. Case 1: ETX exceeds ETXtℎresℎold. AEDP attempts to quickly recover by signif-
icantly reducing the wakeup threshold. This policy reflects the fact that network
reliability constraints are typically more critical than lifetime constraints.

2. Case 2: ETX meets ETXtℎresℎold but WR exceeds WRtℎresℎold. This case indicates
that the current wakeup threshold is too low to achieve the desired wakeup rate. AEDP
increases the wakeup threshold by a small amount ΔT to try to meet the application’s
bound on wakeup rate. The default value of the tuning step ΔT is set to be 2 dBm.

3. Case 3: ETX, WR, and WRL all meet their respective constraints. This case in-
dicates that the current wakeup threshold is meeting the application’s constraints,
both in this period and over the application’s lifetime. AEDP aims to find the mini-
mum threshold that does so, as lower wakeup thresholds are potentially more robust to
changes in topology and signal strength. Hence, AEDP decreases the wakeup threshold
by ΔT .

4. Case 4: ETX and WR meet their constraints but WRL does not. Here, AEDP takes
no action. Since WR is below WRtℎresℎold, the wakeup threshold is high enough to
meet the application’s wakeup rate constraint in the short term. However, WRL has
still not met the application’s constraint over the long term, so AEDP will not yet
start to reduce the wakeup threshold.

In all cases, AEDP constrains the wakeup threshold T to a range [Tmin, Tmax]. Reducing T too
much will cause the node to always be awake, while increasing T too much will cause packet
loss (increased ETX). AEDP sets Tmin to be the noise floor to avoid sustained wakeups, and
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sets Tmax to be the minimum Received Signal Strength (RSS) of incoming links, since our
experimental results have shown that link reliability degrades heavily when T exceeds the
RSS of incoming link [105]. To accommodate topology changes, AEDP periodically resets
the wakeup threshold to Tmin for several periods (a default value of 5 wakeup intervals)
enabling node to establish new incoming links with RSS lower than T .

AEDP has several key design features based on the observations in our empirical study. First,
AEDP adaptively adjusts energy detection threshold based on changes in network reliability
(specifically, ETX) observed at runtime. Second, AEDP performs its computations based
solely on local state (WR, WRL, and ETX), requiring no additional transmissions between
sender and receiver. Third, AEDP is a lightweight protocol that only piggybacks a single
byte (used to measure ETX) in each existing packet transmission, and introduces no other
traffic of its own.

4.6 Implementation

In this section, we discuss our implementation of AEDP on TinyOS 2.1.1. We first describe
the software architecture used by AEDP. We then discuss several key radio parameters that
affected the energy efficiency of LPL, and present a methodology for picking these parameters
appropriately.

4.6.1 AEDP Architecture

We implement the AEDP algorithm as a layer situated between the application and MAC
layers. This layer consists of three important components. The WakeupRateMonitor com-
ponent tracks the wakeup rate WR and computes the cumulative wakeup rate WRL. The
LinkEstimator component measures the ETX of incoming packets using sequence numbers
in each packet, and computes the average ETX value (ETX) over a sliding window. The
LinkEstimator also measures the RSS of incoming packets, using the minimum average RSS
value of all incoming links as the bound Tmax. The CCAControlEngine component computes
and sets the wakeup threshold based on the values ETX, WR and WRL.
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Figure 4.4: The relationship between wakeup threshold and ETX in the default TinyOS
CC2420 stack.

AEDP requires several modifications to the radio stack to support its operations, as listed
below. For the purposes of this implementation, we have performed these modifications on
TinyOS 2.1.1’s default CC2420 + BoX-MAC-2 stack.

First, we add a PacketInfo interface between the MAC layer and LinkEstimator to expose
the ETX and RSS values of each incoming packet. The LinkEstimator buffers the values in
sliding windows, calculating the average ETX and RSS values for the variables ETX and
Tmax respectively.

Second, we augment the radio core to count wakeup events. This counter is exposed to the
WakeupRateMonitor through the WakeupCounter interface and used to compute the values
of WR and WRL.

Finally, we add a CCAcontrol interface to the radio core to expose the radio’s hardware
CCA threshold setting. On the CC2420, this is implemented by writing the new threshold
to the radio’s CCA_THR register, plus a 45 dBm offset specified by the datasheet [3]. The
CCA Control Engine uses this interface to set the newly-computed wakeup threshold T .
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Figure 4.5: A logic analyzer trace demonstrating the CC2420 fully decoding a packet during
the energy detection check. The microcontroller uses the VREG_EN pin to control the
CC2420’s power state. The CC2420 uses the SFD and FIFOP pins to signal the beginning
(T2) and end (T3) of packet reception, respectively. The GIO pin indicates the duration of
the check (T4–T1).

4.6.2 System Parameters

When testing our first implementation of AEDP on the TelosB mote, we were initially
surprised to discover that increasing the wakeup threshold had little impact on network
reliability. Figure 4.4 plots the relationship between the wakeup threshold and ETX that we
observed in our initial testing, using three different channels and a wide range of threshold
values. We initially expected that an excessively high threshold would cause significant
packet loss, and a high enough threshold would prohibit the node from receiving packets at
all (due to never waking up from sleep). However, in practice, we observed that an overly
aggressive threshold only increased the number of retransmissions by a maximum of 20%.
Indeed, the node still received packets after setting the threshold to the radio maximum of
82 dBm, or even after modifying the CC2420 stack to always put the radio back to sleep
regardless of the energy detection result.

From these results, we hypothesized that the radio was fully receiving and decoding en-
tire packets during the CCA check itself. TinyOS’s implementation of BoX-MAC-2 on the
CC2420 detects energy by sampling the CCA pin up to 400 times in a tight loop. Modern
packet-based radios like the CC2420 are designed to fully decode packets without the micro-
controller’s intervention, and could decode packets while the microcontroller is occupied by
polling the CCA pin.

We confirmed this hypothesis using a logic analyzer to trace the sequence of events inside
the radio hardware and radio stack. Figure 4.5 presents a sample trace that we captured
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with the CC2420 configured to use the maximum threshold6. At 0 ms, the radio stack begins
sampling the wireless channel by powering on the CC2420. The CC2420 is fully powered on
at T1 = 2.947 ms, and the radio stack starts energy detection. At T2 = 5.916 ms, the CC2420
signals the beginning of a packet reception; at T3 = 7.261 ms, the CC2420 signals that the
packet is fully decoded. The radio stack will not finish energy detection until T4 = 11.791

ms. Indeed, the duration of this check (8.844 ms) is much longer than the on-air time of an
802.15.4 packet (0.59− 4.24 ms in lab experiments, depending on payload size).

The apparent cause for this lengthy check is a long ACK delay built into TinyOS’s CC2420
driver. After transmitting a packet, the driver waits up to 8 ms for an ACK packet. In our
own measurements, this resulted in BoX-MAC-2 leaving the channel idle for 8.3 ms between
retransmissions.

In principle, an ACK delay of this length is unnecessary. From the 802.15.4 specification, we
can derive a tight bound of 544 �s on the ACK delay. (Specifically, the recipient must trans-
mit an ACK exactly 192 �s after decoding the incoming packet’s last bit, and transmitting
the ACK packet takes 352 �s at 802.15.4’s 250 kbps data rate [32, 57].) However, TinyOS
disables the CC2420’s hardware auto-acknowledgement feature due to concerns over its re-
liability [9]. Consequently, packets must pass partway through the recipient’s radio stack
before they are acknowledged, adding significant delay.

Nevertheless, we believe that the default ACK delay is overly conservative. In a microbench-
mark experiment, we transmitted packets between a pair of TelosB motes with hardware
auto-acknowledgement disabled. The transmitter requested an ACK for each transmission,
and recorded the delay between finishing a transmission and receiving the corresponding
ACK. Out of 2000 transmissions, the transmitter observed a mean delay of 2.2 ms and a
maximum delay of 2.4 ms.

This result indicates that an 8 ms ACK delay, and the associated 8.8 ms energy detection
length, is excessive. The length of this check contradicts the need for a short, inexpensive
energy detection, and arguably even renders the entire check ineffective. From the 20% ETX

6For illustrative purposes, we modified BoX-MAC-2 to mark the duration of the energy detection loop
using a GIO pin, and to disable a code branch that short-circuits the loop when the radio starts receiving
a packet. We have verified that the CC2420 will still fully decode packets during energy detection, even
without these modifications.
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Driver ACK delay
CC2420(cc2420 driver) 8 ms
CC2420(cc2420x driver,most platforms) 1 ms
CC2420(cc2420x driver,micaz platforms) 0.8 ms
CC2520 (most platforms) 1 ms
CC2520(sam3s_ek platform) 0.8 ms
RF230 1 ms
IEEE 802.15.4 specification 0.544 ms
TelosB (lab measurements) 2.4 ms

Table 4.1: The ACK delays used by various 802.15.4 radio drivers in TinyOS, the ACK delay
derived from [57], and the actual ACK delay measured on a TelosB.

penalty we observed in our testing, it would have been nearly as effective to simply leave the
radio on for 8.8 ms, and ignore the energy detection result. Doing so would have had only
a small impact on network reliability, in exchange for never incurring a false wakeup.

Instead, for the purposes of implementing and evaluating AEDP, we opt to retain the check
but reduce the CC2420 driver’s ACK delay to 2.8 ms (2.3 ms + 0.5 ms guard space). We
accordingly modify BoX-MAC-2 to poll the CCA pin up to 115 times, reducing the energy
detection duration from 8.8 ms to 2.9 ms. In general, the duration of CCA polling must be
longer than the ACK delay to avoid false negatives in energy detection which can heavily
worsen the performance.

As we show in Section 4.7, this modification alone has the effect of significantly reducing the
motes’ duty cycle, simply by reducing the cost of energy detection to a fraction of its default
length.

Although this modification is specific to the particular radio stack used, it emphasizes the
need for a general methodology — such as the analysis performed above — to tune these
key radio and MAC layer parameters. Indeed, as shown in Table 4.1, TinyOS employs three
different ACK delays on the sender side, depending on the combination of radio driver,
radio stack, and underlying mote platform. None of these three different delays is consistent
with the theoretical ACK turnaround time from the 802.15.4 standard, or with the actual
turnaround time measured on the TelosB. Besides energy efficiency, this inconsistency raises
concerns about basic interoperability.
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4.7 Evaluation

To validate the efficiency of our approach in reducing false wakeup rates, we performed
a series of controlled experiments and real-world experiments. (1) We first evaluate the
capability of AEDP to effectively converge to the desired wakeup threshold. (2) We then
performed an experiment where additional transmitters were added to the network at runtime
to test AEDP’s resilience to network changes. (3) We evaluate AEDP’s impact on duty cycles
at the link level, and compare AEDP’s performance against LPL configurations in a testbed
we deployed in a 3-floor apartment building. (4) We compare AEDP against A-MAC, a
state-of-the-art receiver-initiated MAC protocol under different data rates. (5) Finally, we
evaluate the impacts of AEDP on multi-hop data collection by running AEDP with CTP in
a 55-node testbed in an academic building.

In all experiments, we deploy our benchmark applications on top of TelosB motes running
the TinyOS 2.1.1 operating system. BoX-MAC-2 is configured with a wakeup interval of 2
seconds: i.e., the motes sleep for 2 seconds between sampling the channel for activity. We
use a data rate of 1 packet/5 minutes 7 for all evaluations except the one in Section 4.7.5,
where we evaluate the performance of AEDP under different data rates.

We emphasize that our experiments changed only the CCA threshold used for wakeup and
did not change the threshold used for collision avoidance; hence, improvements in duty cycle
are attributed to a reduction in false wakeups rather than retransmissions.

4.7.1 Self-tuning Wakeup Threshold

We first test the capability of AEDP to automatically adjust its wakeup threshold. For this
experiment, we deployed a pair of motes with AEDP on channel 16. We also deployed an
802.11n access point and a laptop producing 1 Mbps of UDP traffic on 802.11 channel 6,
which overlaps with 802.15.4 channel 16. We performed two experimental runs: to vary the
impact of the interfering 802.11 network on the mote pair, the distance between the mote

7The data rate is chosen according to the typical sampling rate of home automation systems (for example,
1 temperature reading every 5 minutes is sufficient for an HVAC system to control ambient temperature).
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Figure 4.6: AEDP adapting the wakeup threshold over time.

pair and the 802.11n devices was 10 ft during the first run, and increased to 30 ft for the
second run.

Figure 4.6 illustrates AEDP reactively changing the wakeup threshold based on runtime
conditions. During the first experimental run, the receiver mote quickly increases the wakeup
threshold to −56 dBm to avoid false wakeups introduced by the nearby 802.11 interferer. At
this point, the mote is still unable to meet the application-specified duty cycle, and hence
the threshold remains at about −55 dBm for the remainder of the experiment. In the second
experimental run, the receiver mote likewise quickly increases the wakeup threshold to −54

dBm. At this point, because the mote is located further away from the interferer, it is
able to meet the application-specified duty cycle; hence, it gradually decreases the wakeup
threshold in increments of 2 dBm. AEDP eventually settles on a threshold between −60 and
−62 dBm that closely matches the requested duty cycle, where it remains for the remainder
of the experiment.

4.7.2 Adaptation to Network Changes

To test AEDP’s resilience to network changes, we performed an experiment where additional
transmitters were added to the network at runtime. We initially deployed a single transmitter
mote and a single receiver mote. A second transmitter was added to the network 21 minutes
into the experiment, and a third was added at 41 minutes. All three transmitters were
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Figure 4.7: AEDP adapting the wakeup threshold over time when new nodes join the net-
work. A second transmitter joined into the network at 21 minutes (vertical black line) and
a third at 41 minutes (vertical red line).

configured to send packets to the single receiver node, where we instrumented AEDP to
record its wakeup threshold over time.

Figure 4.7 illustrates how AEDP adapts the receiver’s wakeup threshold over the course of
the experiment. In order to reduce the false wakeup rate, AEDP quickly increases the wakeup
threshold to −52 dBm; this closely matches the −50 dBm RSS of the first transmitter. After
AEDP reaches its objective false wakeup rate, it begins steadily decreasing the threshold
until the second transmitter joins at 21 minutes. The second transmitter’s signal strength
is slightly higher (−46 dBm) than the existing transmitter. Hence, AEDP responds to the
new node by increasing the threshold to −52 dBm, slightly lower than the minimum of both
transmitters, and again gradually decreases the threshold over time. At 41 minutes, the
third transmitter joins with a significantly lower signal strength at the receiver (−60 dBm)
than the previous two transmitters. Benefiting from the periodical wakeup threshold reset
process mentioned in Section 4.5, AEDP adapts by rapidly dropping the wakeup threshold
to −62 dBm, again slightly below the minimum signal strength of all the transmitters.
These results demonstrate AEDP dynamically adjusting the wakeup threshold to successfully
accommodate network topology changes.

79



www.manaraa.com

4.7.3 Impact on Duty Cycles

To explore AEDP’s impact on duty cycles, we deployed a pair of motes with a modified radio
stack to record the radio on time — i.e., the cumulative time the radio was active — on each
mote. The precise duty cycle is hence derived from the radio on time and the experiment’s
length.

We first deployed the pair on channel 26 in an office environment, which we confirmed to
be clean with a Wi-Spy spectrum analyzer [1]. We performed experimental runs, for 60
minutes each run, once with the default BoX-MAC-2 configuration and once with AEDP.
To isolate the effects of the reduced ACK delay (discussed in Section 4.6.2) from AEDP’s
wakeup threshold tuning, we performed a third experimental run which reduced the ACK
delay but was otherwise identical to the default BoX-MAC-2 stack.

Figure 4.8(a) presents the duty cycle under all three experimental runs, broken down into 5
minute windows. In each 5-minute window, the default BoX-MAC-2 configuration activates
the radio with an average duty cycle of 0.64%. AEDP consistently reduces this duty cycle
over the entire experimental run, by an average of 57.48%. In this clean environment, the
false wakeup rate is very low; hence, AEDP achieves a duty cycle within 99.7% of the
reduced-ACK configuration.

For comparison, we also plot the theoretical optimal duty cycle for both ACK delay config-
urations. Specifically, at a data rate of 1 packet/5 min and a wakeup interval of 2 s, the
optimal duty cycle is 149 ∗ Tidle + (Tp + Ti)/2 + Tp + Td, where Tidle is the time the radio is
active when no energy is detected (11.5 ms under the default configuration, or 4.5 ms with
the reduced ACK delay); Tp is the time needed to receive a packet (4.24 ms); Ti is the gap
between packets (8.3 ms under the default configuration, or 2.8 ms with the reduced ACK
delay); and Td is the time the radio remains active after receiving a packet (100 ms). Be-
cause interference was limited, all experimental runs remained within 7% of their respective
optimal duty cycles.

To evaluate AEDP’s performance under a more typical deployment, we repeated this ex-
periment in a residential setting. This experiment was carried out under normal wireless
condition with residents’ regular wireless activity. The mote pair is configured to use chan-
nel 16, which overlaps with the residents’ 802.11g network. Figure 4.8(b) plots the results
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(b) In a residence with residents’ normal activities.
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(c) In a lab stress test with generated 802.11n interference.

Figure 4.8: Duty cycle under minimum interference, normal residential activities, and sus-
tained interference. Horizontal lines indicate the theoretical optimal duty cycles of 0.259%
(AEDP and reduced-ACK configurations) and 0.608% (default radio configuration).
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under this experimental setup. We observe that the adjusted ACK delay is responsible for
a significant reduction in radio usage, with the average duty cycle in each 5-minute win-
dow dropping from 0.86% to 0.55%. However, in the face of typical wireless noise, AEDP’s
wakeup threshold adjustment has a significant impact on duty cycle. AEDP reduces the
duty cycle to an average of 0.30%, resulting in a savings of 45.5% over the tweaked radio
stack and 65.1% over the default radio configuration.

Because AEDP is largely able to avoid false wakeups, it comes within 15.8% of the theoret-
ically optimal duty cycle. In contrast, the default and reduced-ACK stacks achieves a duty
cycle 41.4% and 112.4% higher than their respective optimal duty cycles.

As a stress test, we repeated the experiment once more in a lab setting under controlled
interference, in the form of a laptop and an access point, located 10 ft from the mote pair,
generating 1 Mbps UDP traffic over an overlapping 802.11n channel 6, which overlaps with
802.15.4 channel 16.

Figure 4.8(c) plots the duty cycle under this controlled experiment. Due to the persistent
source of interference, the default stack has an average duty cycle of 2.69% while the reduced-
ACK stack has an average duty cycle of 1.69%. In contrast, AEDP achieves a duty cycle of
0.89%, a 47.3% reduction over the reduced-ACK stack and 66.9% over the default stack.

Owing to the challenging nature of the wireless environment, all three stacks perform several
times worse than their theoretical optimal duty cycles. However, AEDP comes within the
closest of its optimal duty cycle: 244% higher than optimal, compared to 342% for the
default stack and 552% for the reduced-ACK stack.

4.7.4 Effects of Signal Strength

We explored AEDP’s performance on a diverse set of links by selecting 30 links at random
from the 380 links detected in a testbed we deployed in a 3-floor residential apartment build-
ing. This experiment was carried out under normal wireless condition with four residents’
regular wireless activity. As with the previous experiment, we performed three runs, for 60
minutes each experimental run: one with the default LPL configuration, one with a reduced
ACK delay, and one with AEDP.
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Figure 4.9: AEDP’s performance on links with diverse signal strengths.
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For the purposes of presentation, we group the 30 links into 7 buckets based on their signal
strength, using buckets 5 dBm wide. As shown in Figure 4.9(a), these links show highly
diverse RSS at their respective receivers. For the strongest links (RSS ∈ (−65,−45]), AEDP
achieves a duty cycle of 0.28%, close to the theoretical minimum of 0.259%. This represents
a 40.3% reduction over the reduced-ACK configuration and 65.1% over the default LPL
configuration.

AEDP shows a more moderate — but still significant — improvement in duty cycle on inter-
mediate links (RSS ∈ (−75,−65]). For these links, AEDP achieves a 31.2% reduction in duty
cycle over the reduced-ACK configuration and 52.6% over the default LPL configuration.

For the links with the lowest signal strength (RSS ≤ −75), the RSS is already close to
the radio stack’s default wakeup threshold of −77 dBm. AEDP cannot adjust the wakeup
threshold below the signal strength, since it sets Tmax to be the minimum RSS of incoming
links to avoid sacrificing network reliability. Hence, AEDP’s 35.7% reduction in duty cycle
is attributable only to the reduced ACK length.

As shown in Figure 4.9(b), the reduced-ACK configuration and AEDP introduced a small
number of false-negative energy detection checks which were not experienced under the
default stack, since the number of CCA pin polling was reduced from 400 times to 115
times, as discussed in Section 4.6.2. The reduced-ACK configuration consequently had a 5.5%
increase in average ETX (from 1.05 to 1.11) and AEDP had a 6.7% increase in average ETX
(from 1.05 to 1.12). The slight increases in average ETX are in exchange for a proportionally
much-larger reduction in duty cycle.

We note that links with the lowest signal strength tend to be highly bursty; while produc-
tive for routing, they must be used opportunistically. While AEDP will neither help nor
hurt when such links exist, by their nature this will only happen for short bursts during the
application’s lifetime. During the periods where moderate-to-strong links are used for rout-
ing, AEDP will dynamically increase the wakeup threshold, resulting in significant energy
savings.
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4.7.5 Comparison with A-MAC

Receiver-initiated MAC protocols [32, 118] avoid the false wakeup problem by transmitting
probe packets when nodes are ready to receive data, eliminating the need for recipients to ac-
tively sample the channel. Although AEDP and receiver-initiated MAC protocols approach
the false wakeup problem from different directions, they share the same goal of extending
network lifetime by reducing duty cycle in the face of noisy wireless channels. To under-
stand the effectiveness of these two approaches, we performed a set of experiments comparing
AEDP’s performance with that of A-MAC, a state-of-the-art receiver initiated MAC proto-
col [32]. For this set of experiments, we choose the same set of links from the residential
testbed used in Section 4.7.4, and configured the transmitters to transmit at data rates
ranging from 1 packet/2 s to 1 packet/600 s. We performed each experimental run twice,
once with AEDP and once with the A-MAC implementation provided by the authors of
A-MAC [32]. A-MAC’s radio stack was instrumented to record the radio on time, but was
otherwise set to its default configuration. For fairness, we used the default parameters for
both BoX-MAC-2 in TinyOS 2.1.1 [4] and A-MAC provided by the authors [32]. The only
change we made for BoX-MAC-2 is reducing the ACK delay because of the implementation
flaw discussed in Section 4.6.2.

As shown in Figure 4.10(a), at low data rates (Inter Packet Interval (IPI) within [300, 600] s)
AEDP leads to lower duty cycles than A-MAC. For instance, AEDP achieves an average
duty cycle of 0.338%, representing a 41.5% reduction over A-MAC (0.578%) when IPI is
300 s. AEDP and A-MAC achieve similar duty cycles at intermediate data rates (IPI within
[100, 200] s). In contrast, at high data rates (IPI ≤ 100 s), AEDP leads to a higher duty
cycle than A-MAC. For instance, with an IPI of 30 s AEDP achieves an average duty cycle of
0.803%, which is 24.1% higher than A-MAC (0.647%). As shown in Figure 4.10(b), AEDP
introduced a small number of false-negative energy detection checks leading to an up to
16.7% increase in average ETX (from 1.000 to 1.166 when IPI is 400 s) in exchange for a
proportionally much-larger reduction in duty cycle at low data rates.

The protocols’ respective advantages at different date rates may be understood by analyzing
their respective strategies. Under LPL, senders repeatedly transmit long preambles indicat-
ing that they are ready to send data; recipients periodically sample the channel, and turn
on the radio if energy is detected. Under receiver-initiated MACs like A-MAC, recipients
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Figure 4.10: Comparing AEDP and A-MAC with different inter-packet intervals (IPIs)
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periodically broadcast beacons announcing that they are ready to receive data; senders keep
their radios on waiting for the recipient’s beacon, and then immediately ACK it. In principle,
receiver-initiated MACs replace LPL’s short channel sampling with an entire transmission
plus a short delay waiting for a response. As discussed in Section 4.6.2, the default BoX-
MAC-2 configuration suffers from an unnecessarily high channel sampling cost of 10.0 ms;
in comparison, A-MAC pays a probing cost of 6.2 ms under our oscilloscope measurement.
Consequently, previous literature has found that the overhead of receiver-initiated MAC pro-
tocols can be even lower than LPL [32]. However, after tuning the energy detection length,
AEDP pays a significantly lower sampling cost of 2.9 ms. We note that receiver-initiated
MACs inherently must pay the overhead of an entire packet transmission; hence A-MAC’s
overhead cannot be tuned in this fashion.

Thus, A-MAC has a higher overhead than AEDP at low data rates. However, since A-MAC
saves the cost of sending a long preamble, it is able to outperform AEDP at sufficiently
high data rates. This result suggests that AEDP is more suitable for low date rate applica-
tions, while A-MAC has advantages in high data rate applications. They therefore represent
complementary approaches in the design space of low-power MAC protocols in noisy envi-
ronments 8.

4.7.6 Collection Tree Protocol Performance

Finally, we study how well CTP protocol [42] performs over AEDP. Since AEDP is im-
plemented as a layer situated on top of LPL BoX-MAC-2 MAC layers, running CTP over
AEDP is largely a matter of changing configuration wirings. To explore the performance on
a large scale, multi-hop networks, we run the experiments on an indoor testbed consisting
of 55-TelosB motes in Jolley and Bryan Hall at Washington University in St. Louis [125].
Figure 4.11 shows the network topology with transmission power of 0 dBm. Each node
produces data at a rate of 1 packet every 5 minutes and all data packets are forwarded to a
sink node. We performed two 24-hour experimental runs one with the AEDP and the other

8The pTunes project [135] shows that the performance of MAC protocols are sensitive to their parameters.
Optimizing parameters of a MAC protocol is not the focus of this Chapter. The pTunes system does not
support TinyOS and hence cannot be used to select the MAC parameters for our experiments. Nevertheless
the experimental study presented in this subsection reveals the general trend of the complementary behavior
of AEDP and a receiver-initiated MAC when facing different data rates.
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Figure 4.11: The Testbed topology with a transmission power of 0 dBm. Blue node is a sink
node.

with LPL BoX-MAC-2 configuration with the reduced ACK delay. We use the default CTP
setting in both two runs. To test the network’s performance in a noisy environment, we set
the nodes operating on channel 18 overlapping with the campus Wi-Fi channel.

Figure 4.12(a)- 4.12(c) show the box-plots of the duty cycles of all nodes in the testbed and
the average hop counts and end-to-end ETX of the routes of all nodes. Since the routes of
nodes may change dynamically under CTP, for each node we calculates the average values
of hop count and end-to-end ETX during each 24-hour experimental run. As shown in
Figure 4.12(a) and 4.12(c), AEDP reduces the median duty cycle by 35.44% (from 0.79%
to 0.51%), while also reducing the median end-to-end ETX by 11.26% (from 6.30 to 5.59).
This result shows that AEDA is able to mitigates the impacts of noise on LPL on node duty
cycles while simultaneously reducing the multi-hop transmission cost under CTP. As shown
in Figure 4.12(b), AEDP does result in a slight increase in the median hop count of the
routes (from 2.30 hops to 2.46 hops) as a result of a higher CCA threshold used to filter
out noise. The combination of a lower end-to-end ETX and higher hop counts indicate that
AEDP was able to filter out weak links affected by noise while still enabling CTP to take
advantage of enough good links for low-cost multi-hop communication.
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Figure 4.12: Box-plot comparison between AEDP and LPL BoX-MAC-2 with reduced ACK
delay. Central mark in box indicates median; bottom and top of box represent the 25th
percentile (q1) and 75th percentile (q2); crosses indicate outliers (x > q2 + 1.5 ⋅ (q2 − q1) or
x < q1 − 1.5 ⋅ (q2 − q1)); whiskers indicate range excluding outliers.
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4.8 Conclusion

Maintaining energy efficiency in noisy environments has become an increasingly critical prob-
lem as wireless sensor networks are gaining widely deployment in residential and office en-
vironments. While LPL has been a popular and effective approach to energy-efficient MAC
protocols, false wakeups caused by wireless noise can significantly increase the duty cycle
and compromise the benefit of LPL. To address this problem, we first perform an empirical
study of the false wakeup problem of LPL in real-world residential environments and find
that the CCA wakeup threshold is an effective knob for controlling false wakeups. We then
propose AEDP, an adaptive protocol that dynamically adjusts a node’s wakeup threshold
to improve network reliability and duty cycle based on application-specified bounds. AEDP
has been implemented on TinyOS 2.1.1 and the TelosB platform. Experimental results from
both real-world residential deployments and testbed experiments show that AEDP can ef-
fectively maintain low duty cycles in noisy environments and adapt to network changes and
links with varying signal strength. We also found AEDP and A-MAC more energy-efficient
for applications with low data rate and high data rate, respectively, and therefore provide
complementary approaches suitable for different classes of applications.

There are two limitations to AEDP. First, tuning CCA threshold is ineffective for links with
low signal strength that can be close to or below the signal strength of noise. In this case
AEDP will set the wakeup threshold to the minimum RSS of incoming links and as a result
cannot effectively reduce false wakeups caused by noise. This makes AEDP less effective
for highly sparse networks connected by mostly long links. Second, our implementation
is specific to the particular CC2420 radio stack used. It is important to develop a general
methodology — such as the analysis performed in Section 4.6.2 — to select the key radio and
MAC layer parameters. For a new radio stack, developers should firstly measure the ACK
delay and then tune the duration of CCA polling accordingly. In general, the duration of
CCA polling must be longer than the ACK delay to avoid false negatives in energy detection
which can heavily worsen the performance. On the other hand, a long energy detection
contradicts the need for a short, inexpensive energy detection, and arguably even renders
the entire check ineffective. Therefore, the duration of CCA polling should be slightly longer
than the ACK delay.
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Chapter 5

Self-Adapting MAC Layer for Wireless
Sensor Networks

5.1 Introduction

Research efforts in the last decade produced numerous MAC protocols for wireless sensor
networks (WSNs). Many of the MACs were designed to achieve low latency, high through-
put, low power consumption, or robustness to interference. However, none of the existing
protocols deliver optimal performance in all desirable dimensions under varying environmen-
tal conditions. For instance, sender-initiated low-power listening (LPL) protocols [81] are
power-efficient in absence of ambient noise, but suffer high power consumption due to false
wake ups in noisy environments [105]. Receiver-initiated MACs are resilient to interference,
but incur higher overhead at low data rates in a clean environment. TDMA protocols can
deliver high throughput for high data rate applications by avoiding channel contentions,
whereas CSMA/CA protocols can achieve low latency for low data rate applications.

A fixed MAC protocol therefore cannot meet the demands of varying workloads, diverse
Quality of Service (QoS) requirements, or changing environmental conditions. This problem
is exacerbated with the increased interest in connecting smart phones and wireless sensors
placed on the user’s body or in the surrounding environment. The fusion of a smart phone
and a network of motes opens up opportunities for novel and exciting applications (e.g. fall
detection, vital sign monitoring, and fitness assessment), while also introducing the funda-
mental challenge of maintaining optimal wireless communication between mobile phones and
sensors under varying conditions and demands.
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1. Wireless Environment: The wireless environment changes when the user moves
around. At times WSN will need to be able to deal with a highly noisy environment;
at other times it may enjoy a clean environment. For example, Bluetooth devices,
our own and our neighbors’ Wi-Fi access points, and our microwaves – all generate
interference that interacts with WSN. This interference is unruly in homes and more
orderly in office buildings [106]. A resilient MAC protocol may be required in noisy
environments, while a different MAC may be more efficient in clean environments;

2. Network Traffic: The network traffic is subject to spontaneous changes. For example,
in a wireless health application, the wireless sensors may produce a low amounts of
data during some hours of the day, but sporadically, in response to a critical medical
condition, require rapid transmission of a large volume of data. Moreover, different
sensors have different traffic patterns and a system may turn ON or OFF any one of
the sensors at any given time. For instance during stable periods, heart rate sensing
may occur every minute and the data being sent is typically a single integer. But if the
medical condition changes, the application may activate the pulse sensor continuously,
or decide to activate ECG sensors. The data rate can increase from less than 1 to 750
bytes per second [34];

3. QoS Requirement: The application QoS requirements may also change. While it
may be reasonable to lose a packet sporadically during clinically-stable periods, it may
not be acceptable during imminent clinical deterioration.

Given the dynamic nature of communication between mobile phones and sensors, a tradi-
tional one-MAC-fit-all approach cannot meet the challenges under significant dynamics in
operating conditions, network traffic and application requirements. To fill this need we design
the Self-Adapting MAC Layer (SAML) that makes available multiple MACs in an efficient
manner and selects the protocol most suitable for the current conditions and requirements.
SAML comprises two key components.

1. Reconfigurable MAC Architecture (RMA) that supports dynamic switching among dif-
ferent MACs. RMA holds multiple MACs without bloating its memory footprint due
to its modular design based on shared components;
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2. MAC Selection Engine with a machine learnable model that optimally selects MAC
protocols in terms of reliability, energy consumption, latency, and resiliency against
ambient noise.

We have implemented SAML in TinyOS 2.x on the TelosB platform and a gateway device
that we developed to integrate an Android smart phone with a 802.15.4 radio. We have
validated the efficacy of SAML and the efficiency of its operation by measuring the memory
footprint and the overhead of key operations. We have also performed a four-day real-
world case study in which SAML provides efficient and reliable MAC switching, while saving
31.6% of energy compared with a fixed MAC layer and meeting the QoS requirement of the
application.

The rest of the chapter is organized as follows. Section 5.2 reviews related work. Section 5.3
presents the overview of our system architecture. Section 5.4 describes the design of RMA
and Section 5.5 shows how we realized RMA in TinyOS. Section 5.6 describes our MAC
Selection Engine and Section 5.7 presents experimental results. Section 5.8 concludes the
chapter.

5.2 Related Work

Many approaches have been proposed to reconfigure a WSN by disseminating code to the
nodes. Hui et al. [54] proposes a reliable dissemination protocol that distributes an entire
TinyOS image compiled with a new MAC protocol, across the network and replaces the
current running image on the nodes across the network by reprogramming them. By dis-
tributing an image, nodes benefit from having only the pieces of software that they require
at a given time, but the network pays a large communication overhead during the distribu-
tion, and the nodes incur a large shut down and load times. Many efforts have been made
to reduce the communication overhead. Marron et al. [77] proposes an adaptive cross-layer
framework that selects and disseminates only new fragments of code instead of an entire
image. Mottola et al. [82] uses a reconfiguration programming model to identify a subset of
nodes that should be reconfigured, avoiding flooding to the entire network for each image
distribution. Tavakoli et al. [119] designs an interval-cover graph to minimize communication
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redundancies between multiple applications on shared sensors, while Gauger et al. [40] de-
signs an approach to exchange and relink nesC components by defining an uniform external
interface for all changeable nesC components. In contrast to these dissemination approaches,
our research investigates the efficiency and effectiveness of hosting multiple MACs and en-
abling much more dynamically switching between them at runtime. Our measurements of
code size increase of TinyOS resulting from making available numerous MACs shows that it
is only marginally larger than an OS image containing a single protocol. Our measurements
also suggest that the resulting code size is a non-linear, decreasing function of the number
of MACs included in RMA.

Recently, Zhang et al. [131] designs a toolchain to enable the MAC reconfiguration by re-
linking MAC components at runtime. This design takes a different approach than our RMA:
a computer is used to compute a MAC description, and a parser processes the description
and generates a new MAC based on preloaded MAC components of the sensors participating
in the network. The MAC is then sent to the sensors through radio communication. MAC
switching therefore requires more bandwidth than RMA. Furthermore, the user is responsi-
ble for initiating the work on the computer side to issue the MAC switching command, while
RMA autonomously determines which protocol is optimal for a given scenario at runtime
and performs the switch automatically.

The research community has a growing interest in designing hybrid MACs to combine some
of the advantages of different MAC protocols. Z-MAC [93] allows nodes to compete for
the channel within unassigned TDMA slots. Funneling-MAC [12] allows nodes close to the
sink to run TDMA schedules while all other nodes follow a scheduled contention or polling
based duty cycle. However, these hybrid MACs provide a limited set of features that are
decided at design time, and more features lead to higher degrees complexity in the protocol
design. There are also growing interest in adding adaptation to a single protocol at runtime.
IDEA [24] and MaxMAC [55] proposed to extend battery lifetime and accommodate bursty
traffic demand by adjusting the wakeup interval of LPL BoX-MAC. pTunes [135] allows for
runtime adaptation of MAC parameters of a single protocol. In contrast to the hybrid MACs,
which provide limited number of features, and parameter tuning approaches, which optimizes
the parameters of a single MAC – our work supports switching between various entire MAC
protocols , while enjoying the full benefit of a specific protocol to given conditions. Our
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Figure 5.1: Overview of System Architecture.

approach therefore offers applications a richer optimization space and complements existing
optimization techniques designed for individual protocols.

Adaptive MACs were also researched in relation to IEEE 802.11 networks. Huang et al. [53]
develops an adaptive MAC protocol which can select between multiple MACs. Farago et
al. [35] proposed to dynamically combine a set of existing MACs into a single layer. The
major difference between these 802.11 dynamic MAC frameworks is that our work is designed
to minimize runtime overhead and memory footprint, factors which are critical in low power
and resource constrained sensor networks. Our measurements and empirical results suggest
that our approach of component reuse and our design of MAC switching protocols effectively
reduce static code size and runtime overhead. To the best our knowledge, RMA is the first
reconfigurable MAC architecture that allows dynamic MAC switching for low power wireless
sensors.

We introduced the high-level concepts of SAML and a proof-of-concept integration of two
basic MACs in [61]. Comparing with [61], this chapter presents the complete design of our
Self-Adapting MAC Layer comprising Reconfigurable MAC Architecture, introduces the new
MAC Selection Engine, and provides a systemic experimental evaluation.

5.3 Overview of System Architecture

In this section, we present the overview of the system architecture. Comparing with tradi-
tional architecture, we replace the MAC layer with the RMA and add the MAC Selection
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Engine as shown in Figure 5.1. RMA stores multiple MACs and supports switching between
them at runtime. The MAC Selection Engine is the component responsible for recommend-
ing the best MAC according to the specified QoS requirements, monitoring the dynamic
ambient conditions, and automatically responding (without the need for the application to
manage this process) to changes in the environments. Once a new MAC was determined by
the engine, it will send the MAC ID to the RMA.

One of the primary design goals of SAML is to be transparent to its users. For this purpose,
SAML exposes a set of unified interfaces to the applications using it and to the lower radio
layer. Applications can treat SAML as a traditional single MAC entity and do not need to
manage any aspect of the MAC switches occurring in SAML. Five interfaces are available
to applications: (1) Initialize and start/stop the MAC layer; (2) Control the radio CCA and
backoff policies; (3) Send; (4) Receive; and (5) Specify the QoS requirements of the appli-
cation. Interfaces (1)-(4) were shown to be enough to perform regular MAC operations [64]
and (5) is provided for applications to specify the QoS requirements as an 3-tuple that orders
Reliability (R), Energy consumption (E), and Latency (L) in terms of their relative impor-
tance to the application. This is named the REL order of the application. The REL order
can be updated by the application during runtime to accommodate dynamic changes in its
mode of operation. For example a duty-cycled clinical monitoring application which ranks
energy consumption over reliability and reliability over latency will simply specify E > R >

L to achieve longer battery life. However, during a clinical deterioration period above REL
should probably be changed to R > L > E when the application becomes reliability-critical.

For the radio interfaces, SAML adopts the same low-level interfaces suggested by [64]. These
interfaces are platform independent, rather than specific to a particular radio or micropro-
cessor, enabling portability between different hardware platforms.

We will describe the general design of the RMA in Section 5.4 and then present how we
realize it in TinyOS in Section 5.5. We will show the design of MAC Selection Engine in
Section 5.6. We believe the architecture and design principles of RMA and MAC Selection
Engine are applicable to other OS platforms. To enable the communication between an
Android smart phone to communicate with a 802.15.4 radio, we have developed a Gateway
device. The design of the Gateway can be found at [102].
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Figure 5.2: RMA Architecture.

5.4 RMA Architecture

In this section, we present the RMA architecture. Our design addresses the following goals:
(1) The architecture needs to present a unified set of interfaces to both its upper layer
application users and lower layer radio developers. (2) RMA should reliably switch MACs
while maintaining consistency between different nodes in the network. (3) The incorporation
of multiple MACs should not significantly increase the memory footprint of the MAC layer.
(4) Switching MACs should incur only a small runtime overhead in term of both CPU cycles
and communication bandwidth.

5.4.1 Overview of the Architecture

As Figure 5.2 shows, RMA has four major modules. TheMAC Container stores the MACs
which are available at runtime. We leverage a component based architecture to reduce the
memory footprint by allowing multiple MACs to share components (Section 5.4.2). Upper
Switch and Lower Switch provide a unified set of interfaces to application and lower
radio core; abstracting away the details of the MAC layer (Section 5.4.3). MAC Control
Engine controls the identification of the active MAC, manages the neighborhood table,
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and supervises protocol switching when it receives reconfiguration request from the MAC
Selection Engine (Section 5.4.4).

5.4.2 MAC Container

The MAC Container stores the MACs which are available at runtime. The design challenge
we were facing is to enable multiple MACs without incurring a prohibitive increase in the code
size. The naive approach would be to have the container encapsulate multiple monolithic
MACs, resulting in a code size that is the sum of the size of all individual MACs; but this
would exhaust the onboard memory very quickly. An alternative approach is to distribute the
new MAC wirelessly at runtime during switching; but this would incur long latency, consume
the network bandwidth, and spend precious energy on radio communication. The problem
is exacerbated for mobile WSNs, such as a Body Sensor Network, since the MACs may need
to change in a time scale of minutes due to the frequent changes in the environments or
application needs.

MACs share many common functions and can be distilled to a set of reusable components [64].
To support a variety of MACs with minimal penalty to code size, our MAC Container is
designed to hold these reusable components, from which MACs are built. The components
inside the MAC Container can be (re)wired in different ways to construct various MACs.
Our experimental results in Section 5.7.1 show that this component based approach only
moderately increases the code size, when comparing RMA supporting multiple MACs even
code using only a single MAC.

5.4.3 Switches

The Upper Switch and Lower Switch are two important design constructs of RMA. Their
main purpose is to enable efficient (and possibly frequent) dynamic routing between compo-
nents. All MACs within the MAC Container provide and use a uniform set of interfaces to
the layer above and below the MAC layer. The switch is responsible for routing commands
and events through the interfaces provided by the currently active MAC, using only a single
variable to identify the active MAC. This variable is used as a select signal, determining
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which MAC is going to respond. This technique allows very quick protocol changes relative
to many other alternatives such as dynamic loading of code functions, thread switching, and
so on.

5.4.4 MAC Control Engine

The MAC Control Engine implements RMA core logic. It is designed to facilitate the
identification of the active MAC, manage the network topology, and supervise the MAC
changing process. It includes three major units:

Protocol Control

Protocol Control keeps track of the active MAC and makes sure all the components in the
MAC Container are synchronized to the same MAC. The components are shared between
different MACs and can be (re)wired in different ways to construct various MACs. The names
of the components are maintained in a list in Protocol Control to address the components
during MAC switching. When a MAC change occurs, Protocol Control treats the change
process as a transaction. Either all of the updates occur and the protocol is changed, or the
transaction will be rolled back.

Network Control

The Network Control unit manages the network topology. A node is specified by the ap-
plication as a coordinator, which is responsible for nodes joining and leaving the network.
In mobile WSNs, due to changing interference levels for example, this can occur frequently.
The smart phone is usually a natural choice for the coordinator. To indicate the current
MAC used by the network the coordinator disseminates an announcement packet, which
includes the active MAC’s identification (MAC ID) in each period T1. If the current MAC
uses beacons, RMA inserts a single byte into existing beacons instead of generating new ones
to reduce communication overhead. For instance, RMA can use the time synchronization
beacon of TDMA-based MACs.
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Before joining, a new node does not know which MAC is in use by the network and thus
cannot join or talk with the rest of the network. For this purpose, we design a baseline-
MAC which all nodes except the coordinator implement by default as part of RMA. The
coordinator does not need this baseline-MAC and can run any MAC it wants when it boots,
since all other nodes will synchronize their MAC to the coordinator. The baseline-MAC is
designed to allow the initial formation of a network and to allow nodes to join or rejoin an
already running network. When a sensor node boots, it first runs the baseline-MAC, which
turns on the radio and overhears all packets. After it catches a protocol announcement packet
from the coordinator, it changes to this new protocol and sends a join-network request to
the coordinator. When the coordinator receives the request, it adds the new node to its
neighborhood table and allocates resources for this node.

As discussed above, new nodes, or nodes that lost connectivity to the network, may not know
what MAC the network is currently running. Furthermore, at any given time the nodes need
to know if they are connected to the network or not. We address these concerns by defining
two time intervals: The coordinator needs to announce that it is present every T1 seconds
and nodes need to announce that they are connected every T2 seconds. After joining the
network, a regular node (non-coordinator) transmits a dummy packet to report alive each T2
seconds, unless it happens to send data packets during this period. If the coordinator does
not hear from a node (newly joined or one that was already in the network) within 5 × T2
seconds it treats it as a node that left the network. It is removed from the neighboring table
and all other resources assigned to it are deallocated. A regular node in the network changes
back to the baseline-MAC and trys to rejoin if it does not hear from the coordinator within
5 × T1 seconds. This simple protocol maintains synchronization across the network, while
accounting for the highly dynamic nature of mobile networks.

It is worth noting that we choose the values, 5, empirically, as they provided good balance
between giving up too soon on a network node and allowing for dynamic nodes to join and
leave as they wish. However the T1 and T2 factors do not need to be equal and other values
can be used.
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Switching Control

When a coordinator receives a MAC ID from its MAC Selection Engine, it verifies that the
new MAC is different from the current one and checks whether the requested MAC is stored
in the MAC Container. If both conditions hold, the Switching Control unit notifies all sensor
nodes in its neighborhood table and then performs the protocol change. It firstly refuses new
packets issued by the application, waits for all existing packets buffered in the MAC layer
to be transmitted, and then shuts down the current MAC orderly. The variable holding the
active MAC ID will be updated, and then the new MAC will be started. If the new MAC
has successfully started transmitting, then Switching Control unit returns a success to the
requesting application. Otherwise, it rolls back to the old MAC and retries the change. This
process is allowed to repeat 30 times before the protocol change request is discarded. We
choose the constant 30 empirically; fewer attempts will consume less energy, but will result
in higher chance of giving up.

5.5 Realization of RMA in TinyOS

In this section, we describe how we realize RMA in TinyOS 2.1.1. While RMA has been
implemented in TinyOS, we believe its design principles are applicable to other OS.

5.5.1 MAC Container

The MAC container stores various components from which MACs are built. Our impetus in
creating the abstraction of the MAC Container is to minimize code size, which is essential
given the limited resources on motes. Notably, for TinyOS the nesC compiler only creates
one instance for each non-generic component, no matter how many times it is used by dif-
ferent code segments [4]. RMA reuses the components from the MAC Layer Architecture
(MLA) [64], which distill common features of different MACs to a set of reusable components.
However, MLA was designed to facilitate the implementation of MACs at development time
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and does not support MAC layer reconfiguration at runtime. Our MAC Container encap-
sulates MLA components and adds new mechanisms to enable (re)wiring components such
that they support runtime reconfigurations.

In TinyOS allowing component sharing raises the typical fan-out issue of nesC, which is not
a desirous effect for RMA. Here we briefly describe this issue, and a detailed explanation
can be found in [69]. Fan-out: A single interface of a component (caller) is wired to two
interfaces belonging to different components (callees). When the caller invokes a command
on that interface, both callees will be invoked in an undefined order and may return different
results.

When components are shared by different MACs they may be configured to perform different
operations at different times. Only one MAC should run at a time and other MACs should
stay inactive. Invoked by an command that was not meant for it, the code of inactive MACs
may perform some unwanted operations, such as polling the channel, turning off the radio
or starting an alarm, which may conflict with the active MAC. Our solution is adding a
very lightweight RMA Wrapper that wraps each shared interface with a parameterized
interface. In TinyOS, we use nesC parameterized wiring feature using the active MAC ID as
the parameter. The code below shows the nesC code for a parameterized interface in such a
RMA Wrapper.

module SharedComponent {

//uses interface A;

uses interface A[uint8_t id];

}

implementation {

uint8_t currentMac;

//call A.anycommand();

call A.anycommand[currentMac]();

}

In each RMA Wrapper, a parameter is added on each interface declaration. A integer
variable, “currentMac”, indicates the active MAC ID. We use a local variable instead of a
global variable to avoid potential race conditions. When a component calls a command
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Figure 5.3: Parameterized wiring based Switch design.

through its parameterized interface, only the code of the current active MAC will be called.
The same idea is applied when signaling an event. Each RMA Wrapper also needs to expose
a setMacid interface for Switching Control unit to change the “currentMac” value. The
MAC switching logic will be discussed in Section 5.5.3.

5.5.2 Switches

Similar to the design of RMA Wrapper, we use nesC parameterized wiring to implement
the Upper and Lower Switches of RMA in TinyOS. Figure 5.3 shows the design of Upper
Switch which provides one single set of interfaces to the MAC Selection Engine, while using
multiple set of interfaces provided by different MACs. Hence connecting many MACs to a
single consumer. The active MAC ID is used to select between, or enable, only one of the
MACs at runtime. The code below shows the nesC code for a parameterized interface that
achieves this.

module UpperSwitch {

provides interface A;

uses interface A’[uint8_t id];

}
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implementation {

uint8_t currentMac;

command void A’.command(){

call A’.command[currentMac]();

}

}

In the Upper Switch, a parameter is added on each interface that the Upper Switch provides.
At runtime the variable, “currentMac”, indicates the current active MAC. As explained before
this parameterized interface declaration makes the upper layer application calls invoke only
the code of the current active MAC. Upper Switch expose a setMacid interface for Switching
Control unit to change the “currentMac” value. Upper Switch initializes the MAC switching
through the MacSwitch interface when a new decision is generated by the MAC Selection
Engine and its value is difference from “currentMac”. The MAC switching logic will be
discussed in Section 5.5.3.

The same idea is applied in the design of Lower Switch, which allows many internal com-
ponents of RMA to be connected to the single interface provided by the radio core. In the
Lower Switch, a parameter is added on each interface that the Lower Switch uses to avoid
the fan-out problem when signaling an event.

5.5.3 MAC Control Engine

Protocol Control

An integer variable named “currentMac” is maintained in all RMA Wrappers and Switches,
indicating the active MAC ID. The Protocol Control unit uses an array to store the list
of RMA Wrappers and it uses this list to treat a MAC switch as a transaction. Either all
wrappers and switches will change their “currentMac” value to indicate the new protocol, or
none of them will. In TinyOS, this is achieved using an atomic block.
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Network Control

Network Control, when running on a coordinator node, maintains a neighborhood table to
keep track of the nodes in the network 9. We reserve the first byte in payload packets for
broadcasting the MAC ID. Nodes that did not join the network run the baseline-MAC and
use this field to recognize the current MAC. RMA requires each MAC to provide a method
for new nodes to join the network. For instance, we observed that some MACs cannot deal
with network topology changes since they do not support methods for new nodes to join or
leave the network. Pure TDMA implemented by [64] is such a protocol. It initially accounts
for the nodes in the network and divides a fixed time window to slots for the number of
nodes currently in the network. With all the time slots allocated to nodes, no new node can
join. We accounted for that in our own version of pure TDMA by reserving one of the slots
to an arbitrary new node. When more than one node is trying to join the network they will
compete for this slot using a CSMA-style technique.

Switching Control

When the coordinator decides to switch MACs it sends out the switching command to every
node in its neighborhood, and then reconfigures its MAC layer to the new MAC. Similarly,
every regular node switches to the new MAC after receiving the switching command. Since
the delivery of a packet with switching command is critical for protocol synchronization
across the network, the Switching Control unit on the coordinator node uses a single hop
unicast with Automatic Repeat reQuest (ARQ) to notify the new MAC to each node in the
network1. The coordinator treats a node as a one that left the network and will release its
resources after 30 failed attempts.

Switching Control exposes to the Upper Switch the MacSwitch interface. When the changemac
command is invoked by the Upper Switch, Switching Control unit calls the stop() command
of the SplitControl interface to shut down the current MAC whose MAC ID is “current-
Mac” value. It then changes “currentMac” values through the setMacid interface in each

9In principle, RMA can be extended to support multi-hop networks. Dissemination protocols (e.g. [72])
can be used to broadcast the active MAC ID or a switching command in a multi-hop network. Mechanisms
to ensure agreement on the MAC among sensors within the network will need to be employed [20].
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RMA Wrapper based on the list maintained in Protocol Control as well as the values in the
Switches. After this is completed it invokes the start() command to turn on the new MAC,
whose MAC ID is the new “currentMac” value.

The stop() command of the SplitControl interface is critical for RMA for performing
MAC change. stop() command does not attract enough attention by MAC developers
since it is not commonly used in a single MAC environment. When we reviewed the orig-
inal implementations of MACs we found out that the start() command, which is used to
start the MAC, is carefully implemented; but often the stop() command is vacuous or not
carefully implemented. Sometimes developers forget to stop the timer or alarm which was
started in the protocol’s start() command or during the protocol execution. This may
cause unreliable operation in a multi MAC environment. Therefore, we emphasize that all
logic units started during protocol initialization and execution must be stopped within the
implementation block of the stop() command.

5.5.4 Implementations

We obtained the source code of MLA, which works with TinyOS 2.1.1 from [79]. The source
code includes the implementation of BoX-MAC [81] and pure TDMA. We also obtained
the implementation of RI-MAC [118] from its authors 10. As an exercise, we implement
an adaptive TDMA based on pure TDMA (this protocol allows reconfiguration of TDMA
frames at runtime) and a ZigBee MAC based on the standard [134].

The naming we used in the TinyOS RMA are as follows: We implemented SwitchUpC com-
ponent as Upper Switch and SwitchLowC component as Lower Switch. The MacC component
is the MAC Container and all the functionality in the MAC Control Engine are fulfilled by
ProtocolsControllerC. The baseline-MAC is implemented in the BaseLineC component.

We have built three prototypes using our TinyOS implementation of RMA: a CSMA/TDMA
prototype, a SI/RI-MAC prototype, and a 5-MAC prototype. The CSMA/TDMA proto-
type includes a CSMA/CA MAC (BoX-MAC) and a TDMA MAC (pure TDMA). The
SI/RI-MAC prototype includes a sender-initiated MAC (BoX-MAC) and a receiver-initiated

10The authors’ implementation is based on TinyOS 2.0.2, which we port to TinyOS 2.1.1
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Figure 5.4: MAC Selection Engine.

protocol (RI-MAC). Lastly the 5-MAC prototype includes all five MACs (BoX-MAC, pure
TDMA, RI-MAC, adaptive TDMA, and ZigBee MAC).

As a summary for future researchers we summarize the procedure of creating a RMA proto-
type:

1. Implement the MACs you desire using the reusable components provided by MLA;
Make sure each MAC provides a method for adding new nodes to the network;

2. Identify the components which are shared by these MACs and wrap each of them with
a RMA Wrapper (discussed in Section 5.5.1).

3. Assign each MAC a unique integer as its MAC ID;

4. Add the names of these shared components into the RMA Wrapper list (discussed in
Section 5.5.3);

5. Wire the interfaces exposed by the individual MACs to the parameterized interfaces
exposed by SwitchUpC component and SwitchLowC component (discussed in Sec-
tion 5.5.2) using MAC ID as the parameter.

5.6 MAC Selection Engine

In this section, we present the design of the MAC Selection Engine.
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5.6.1 Overview of the Engine

The MAC Selection Engine decides, based on a machine learnable model, which is the best
MAC protocol for given application QoS requirements (a REL order), current traffic pattern,
and ambient interference levels. As shown in Figure 5.4, the engine includes three major
modules: The Traffic Monitor keeps track of the application traffic pattern by snooping
the send commands called by the application and calculating the mean and variance of Inter-
packet Interval (IPI) in a sliding window of 100 seconds. The Noise Monitor measures
the external interference level in the environments by calculating the mean and variance of
the Received Signal Strength (RSS) in a sliding window of 10 seconds. We chose RSS as an
indicator estimating the interference level since recent studies showed that 802.15.4 sensors
can effectively detect external interferers by polling Received Signal Strength Indicator [49].
The Classifier determines the best MAC according to the current application specified REL
order and the values emitted from the Traffic and Noise Monitors. The Classifier then issues
its decision (MAC ID) as a request to the RMA to switch MACs. The detailed design and
implementation of the classifier is described in Section 5.6.2.

We emphasize that only the network coordinator node needs to run the engine and the
coordinator’s RMA is responsible for propagating the MAC protocol switching across the
network (See Section 5.4.4). The other nodes need to have only the RMA module.

5.6.2 Classifier

We choose to use a decision tree as the classifier for a number of reasons: there are only
a handful of MACs that can practically be available in any container; and each protocol is
generally good at some characteristics (e.g. most efficient at low data rates) and is not so
good at others. So often the classifier will only have limited, discrete choices to make. When
we consider the limited amounts of memory available on sensors, decision trees are compact
to represent in a data structure. And from the computational point of view, a decision tree
will consume a marginal amounts of resources and will be fast at runtime.

To gather training data for the model, we run experiments that vary the features we were
interested in, while recording the operating characteristics and the MAC protocol in use
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Figure 5.5: Decision tree.

(the class). We determined the features by noting that some protocols are good at high
data rates, while others conserve energy and are good at low rates; and some protocols stay
reliable at high interference levels, while others do not. With that in mind the characteristics
we use for classification are:

1. Application QoS requirements

2. Traffic pattern

3. Ambient interference level

To represent these characteristics, we selected the following features: (1) Application speci-
fied REL order; (2) Mean and variance of the Inter-packet Interval (IPI) within a 100 seconds
sliding window; and (3) Mean and variance of the RSSI within a 10 seconds sliding window.
The protocol being used is recorded and denotes the class.

The Energy that each MAC protocol consumes under certain operating conditions is com-
puted by the time duration when the radio is on/off. We define Latency as the time interval
between a packet being sent by one sensor and the time it is received at another. We use
Packet Delivery Rate (PDR) to represent Reliability.
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We have ran 224 sets of experiments, varying IPI and ambient interference by changing the
distance from a pair 802.11 devices with controlled traffic. We measure each combination of
operating characteristics multiple times, and collected the operating results of various MACs
in terms of the features described above. In total we collected 4624 training examples. Each
example is calculated within a sliding window of 10 seconds. We used Weka [120] to learn
from the training data and built a decision tree using the C4.5 [90] algorithm. The resulting
model (tree) is shown in Figure 5.5.

Referring to Figure 5.5 before decisions are made by the decision tree, if compatibility with
other ZigBee devices is required, then at the root node the system instructs to use the ZigBee
MAC which was designed for compatibility across different platforms. Otherwise, if the IPI
variance is higher than 20 ms2, the classifier selects adaptive TDMA protocol. This is an
apt choice that the model learned, since adaptive TDMA allows reconfiguration of TDMA
frames to accommodate aperiodic traffic. The next level of the tree takes into account the
application’s highest REL order (the application’s 1st priority) and provides a 3-way split.
If the split was on Reliability, the next level of the tree (IPI mean) takes into account the
mean IPI. If the Traffic Monitor observes small mean IPI (lower than 140 ms), the system is
instructed to use pure TDMA. Otherwise the application 2nd priority is taken into account.
If the split was on Energy consumption, the next level of the tree (Environment) takes into
account the noise level.

To learn the mode and test its performance measures we used the 10-fold cross validation
of Weka. The model obtains a true positive rate of 95.6% and a false positive rate of
7.1%. These performance measures demonstrate that our features can effectively select the
best MAC for the specified application’s REL order, traffic pattern, and current ambient
interference level.

5.7 Evaluation

We validate the efficacy of SAML and the efficiency of its operation in numerous ways. We
start by measuring the memory footprint of the three prototypes discussed in Section 5.5.4.
In these prototypes, RMA hosted between 2 to 5 MAC protocols in its container. This is a
typical range and should provide a good representation of code size. We then measure the
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ROM (bytes) RAM (bytes)
BoX-MAC 25308 1114
pure TDMA 25362 1202
RI-MAC 25132 1268
adaptive TDMA 25418 1126
ZigBee MAC 27168 1272
RMA CSMA/TDMA 28016 1254
RMA SI/RI-MAC 27752 1896
RMA 5-MAC 29990 1968

Table 5.1: ROM and RAM usage for each RMA prototype or single MAC.

overhead of key RMA operations such as new node joining the network and MAC switching.
We intentionally disable the MAC Selection Engine and manually inject the MAC IDs to
support the experiments presented in Section 5.7.2. Finally, we enable the MAC Selection
Engine and perform a real-world case study in which we demonstrate the effectiveness and
benefits of dynamic MAC switching in terms of reliability and energy consumption.

5.7.1 Memory Footprint

RMA’s design had to balance two conflicting goals. On one hand, we want RMA to host as
many MAC protocols as any application may require to optimize its performance along on
some future, and possible unknown, dimension. On the other hand, artlessly, more protocols
will increase the OS code size. We addressed this conflict by breaking MAC protocols to
reusable components, resulting in a code size that is a concave down function of the number
of protocols.

In Table 5.1 we compare the ROM and RAM usage as reported by the TinyOS tool-chain
for five single MACs as well as three RMA prototypes discussed earlier.

Comparing the RMA CSMA/TDMA prototype containing two MACs (BoX-MAC and pure
TDMA), with the one containing only BoX-MAC, we observe that the RMA consumes only
2708 additional bytes of ROM and 140 additional bytes of RAM 11. This is only 10.7%

11For reference the MSP430F1611 MCU used by the TelosB and Tmote Sky motes provides 48 Kilobytes
of ROM and 10 Kilobytes of RAM.
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ROM and 12.6% RAM increase from a single MAC. Compared to pure TDMA only, RMA
prototype consumes 2654 additional bytes of ROM (10.5%) and 52 additional bytes of RAM
(4.3%).

RMA SI/RI-MAC prototype with two MACs (BoX-MAC and RI-MAC) adds only 2444
bytes of ROM (9.7%) and 782 bytes of RAM (70.2%) compared to BoX-MAC. RMA adds
2620 bytes of ROM (10.4%) and 628 bytes of RAM (49.5%) compared to RI-MAC. We are
not concerned with the high RAM percentage because in terms of percentages from the mote
resources the percent increases are similar to the ones reported in the next paragraph (less
than 8% in the worse case for all cases we have studied so far).

Comparing the 5-MAC RMA with the ZigBee MAC, which consumes the most memory out
of all single MACs, shows that the RMA version consumes 2822 additional bytes of ROM
(10.4%) and 696 additional bytes of RAM (54.7%). This increase represents a 5.7 percent
increase in the ROM and 6.8% increase in RAM of the mote’s memory resources.

In all cases, we clearly see that RMA is highly effective in avoiding memory bloat. This
conclusion holds even when supporting a large and diverse set of MACs, which makes RMA
practical to deploy on memory constrained sensors.

5.7.2 Micro-benchmark Experiments

We evaluate the latency and power consumption when new nodes join the network and
switch between MACs. We measure the consumption using a power meter from Monsoon
Solutions [80] whose probes are connected to the sensor voltage pins. For this experiment, we
use a Samsung Galaxy Note with a gateway board [102] that works as the coordinator. The
coordinator is initialized to run BoX-MAC with a wakeup interval of 150 ms and broadcasts
the MAC ID every 5 seconds. A mote running the baseline protocol was added to the network
at T0 = 0. After 10 seconds, we issue a command through the phone requesting a switch
from BoX-MAC to pure TDMA. The pure TDMA frame is configured to include 20 time
slots with 10 ms for each slot. The 10th time slot is configured to allow unknown nodes
to perform CSMA-based random access. A second mote running the baseline protocol was
added to the network after 5 seconds.
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Figure 5.6: Time duration of a node joining a network running BoX-MAC.

Figure 5.7: Time duration of protocol switching from BoX-MAC to pure TDMA.

Figure 5.6 shows the time duration of the first mote joining this network (running BoX-
MAC). After booting, the new mote begins to run the baseline-MAC, snooping the channel
continuously. At T1 = 5590.7 ms, the node receives a broadcasted packet with MAC ID of
the current protocol sent by the coordinator. At T2 = 5594.2 ms, the node starts sending
requests to join the network until it receives an acknowledgement to do so at T3 = 5698.2

ms. This request process takes T3 − T2 = 104 ms and consumes 7.29mJ of energy (70.13

mW of power on average) 12. At T4 = 5703.4 ms, the new mote turns off the radio, switches
the MAC from baseline-MAC to BoX-MAC and then performs low power listening. The
switching process T5 − T4 takes 3.4 ms and consumes 2.86�J of energy (0.84 mW of power
on average).

Figure 5.7 shows the case where the mote receives a command requesting it to switch from
BoX-MAC to pure TDMA. At T6 = 10151.4 ms, the mote wakes up and receives the switching
command. Then the mote sends back an acknowledgement at T7 = 10169.5 ms, turns off
the radio, and starts switching the protocol. The radio is turned back on at T8 = 10173.0,
now waiting for a TDMA time synchronization beacon. The switching process T8−T7 takes
3.5 ms and consumes 2.87�J of energy (0.82 mW of power on average).

12This duration depends on BoX-MAC wakeup interval.
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Figure 5.8: Time duration of a node joining the network running pure TDMA.

Figure 5.8 shows the time duration of a second mote, also running baseline-MAC, joining the
network running pure TDMA. At T9 = 15628.4 ms, the mote receives a broadcasted packet
with MAC ID. With the frame information stored in the beacon, the node realizes that the
10th time slot can be used for new node to randomly access the channel. At T10 = 15728.4

ms the node performs a CCA check and then transmits a request to join the network. After
receiving an acknowledgement, the node turns off the radio at T11 = 15741.5 ms and switches
from the baseline-MAC to pure TDMA. It then waits for a TDMA beacon at T12 = 15745.0

ms.

For each RMA prototype we randomly generate 100 MAC switching commands through the
phone with random intervals ranging from 5 seconds to 10 minutes and obtain a result of
100% of MAC switching success rate. From the power meter traces we observed that the
switching process takes about 3.5 ms and consumes about 2.94�J of energy on average.
This short transiting time is achieved by the RMA’s fast MAC switching design and this low
switching power can be explained by the radio chip being off during the switching. These
results demonstrate the efficiency of RMA in terms of controlling nodes as they join the
network or switch between different MACs.

5.7.3 Case Study

To illustrate the potential benefits of dynamic MAC switching, we perform an empirical case
study emulating a wireless health scenario. In our hypothetical scenario, the application
periodically (twice per second) samples the person’s pulse and oxygen saturation in the blood
by using a wireless pulse oximeter. The application starts to collect a 1-hour continuous
ECG streaming when an abnormality in these vital signs is detected. In this emulation
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we do not perform the sensing because the actual values are irrelevant to the evaluation of
SAML. Instead, a corresponding (equivalent to the real application) rate of packet generation
is maintained by generating packets following the traffic pattern of 1 packet/500 ms for
pulse and oxygen saturation sampling suggested by [28] and adopt a packet rate as high as
1 packet/50 ms with a payload of 15 bytes to accommodate the 500 Hz 12 bits ECG sampling
recommended by [34]. In our wireless health scenario, we set (E > R > L) as the REL order
during the clinically (periodic pulse and oxygenation sampling) normal period and set (R >

L > E) during the clinically abnormal (ECG streaming) period.

For our case study, a Ph.D. student volunteered to wear a TelosB mote on his wrist, a
second TelosB mote on his chest 13, and the TelosB gateway in his pocket. The volunteer
carefully repeated the same daily schedule over four days to provide similar environments as
we collected data for the different protocols.

To compare the performance between single MACs and SAML, the volunteer wore the motes
for 12 hours (from 10:00 to 22:00) during four consecutive weekdays and went about his
regular daily activities. The activities were repeated at about the same time each day. The
motes run our SAML with 5 MACs on the first day, and BoX-MAC, pure TDMA, RI-MAC,
one on each of the respective day afterwards. During these days we intentionally emulate
three clinically abnormal events to trigger the ECG streaming at 2 hours, 4 hours, and 6
hours after the experiment started each day. Since our volunteer was active and mobile
throughout this experiment, we could not measure the power consumption directly. Thus,
we instrumented the radio stack, measured the radio ON time Ton, and use the actual duty
cycle to estimate the energy consumption rather than measure it directly by a power meter.
We use the equation Uon ∗ Ion ∗ Ton + Uoff ∗ Ioff ∗ Toff to estimate the power consumption
in each cycle (parameters Uon, Ion, Uoff , and Ioff are from CC2420 data sheet).

Figure 5.9 and Figure 5.10 show the raw data of reliability in term of Packet Delivery Rate
(PDR) and power consumption during the 10 hours case study. From the figures, we can see
that SAML uses BoX-MAC when performing the pulse sampling during the first 2 hours.
When an abnormal-vital event is triggered at 12pm, SAML switches to pure TDMA to
accommodate the high data rate generated by ECG streaming. SAML switches back to

13These two places are where the typical commercial heart rate and ECG sensors would be placed (e.g.
Polar Heart Rate Monitor [86], Shimmer ECG mote [109]).

115



www.manaraa.com

0

0.5

1

0

0.5

1

0

0.5

1

P
D

R
 (

%
)

10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM
0

0.5

1

Time

RI−MAC

pure TDMA

BoX−MAC

SAMLRI−MAC
pure TDMA

Figure 5.9: PDR of BoX-MAC, pure TDMA, RI-MAC, and SAML during 10 hours.

0

40

80

120

0

40

80

120

0

40

80

120

P
o

w
e

r 
C

o
m

s
u

m
p

ti
o

n
 (

m
W

)

10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM
0

40
80

120

Time

pure TDMA

pure TDMA

RI−MAC

BoX−MAC

RI−MAC

SAML

Figure 5.10: Power consumption of BoX-MAC, pure TDMA, RI-MAC, and SAML during
10 hours.

116



www.manaraa.com

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 Link 1 Link 2
0

0.2

0.4

0.6

0.8

1

P
D

R
 (

%
)

BoX−MAC SAMLpure TDMA RI−MAC

Figure 5.11: Box-plot comparison on PDR of two links during three ECG streaming between
BoX-MAC, pure TDMA, RI-MAC, and SAML. Central mark in box indicates median; bot-
tom and top of box represent the 25th percentile (q1) and 75th percentile (q2); crosses indicate
outliers (x > q2 + 1.5 ⋅ (q2− q1) or x < q1− 1.5 ⋅ (q2− q1)); whiskers indicate range excluding
outliers.

Sink Node Sensor Node 1 Sensor Node 2
0

5000

10000

15000

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

 

 SAML
pure TDMA

Figure 5.12: Comparison on total energy consumption over three nodes during vital signs
sampling between pure TDMA and SAML.

117



www.manaraa.com

BoX-MAC at 1pm when ECG streaming is stopped. The same pattern repeated at both
2pm and 4pm when two other abnormal-vital event are triggered. Around 5:30pm, SAML
switches to RI-MAC when it detects a noisy environment at volunteer’s home.

Figure 5.11 shows box-plot of PDR between two links during the three ECG streaming.
The plot compares BoX-MAC, pure TDMA, RI-MAC, and SAML in terms of maintaining
the link reliability. Only pure TDMA and SAML achieved a PDR higher than 99.6% and
met the application reliability requirement (the application specified that as the top priority
during ECG streaming). BoX-MAC and RI-MAC failed to provide reliable links and yielded
a median PDR of 12.7% and 52.9% respectively. Pure TDMA however, suffers from very high
energy consumption due to its fixed time frame and periodic beaconing. From Figure 5.10
we see that during clinically normal period (when data rate is low) pure TDMA (106.4 mW)
consumes 77.3% and 60.5% more power than BoX-MAC (60.0 mW) and RI-MAC (66.3mW),
respectively. A system with a single MAC, in this case pure TDMA, would not be able to
switch during this period to conserve energy. From Figure 5.12, we can see SAML saves
66.2% of energy on the sink node (SAML: 388.6 J and pure TDMA: 1148.2 J) and 30.1% of
energy on the sensor node (SAML: 803.6 J and pure TDMA: 1150.0 J) by switching to BoX-
MAC on campus (where the interference level is not overly high) and outdoor and switching
to RI-MAC at home (high interference due to many WiFi networks). Overall, SAML saves
31.6% of energy (1451.7 J) comparing with pure TDMA but still achieves the QoS reliability
requirement of the application throughout the 10-hour case study.

5.8 Conclusion

The convergence of mobile phones and wireless sensors exposes the MAC layer to varying
applications and dynamic environments where a fixed MAC protocol cannot always deliver
satisfactory performance. In contrast to the traditional one-MAC-fit-all approach, we devel-
oped SAML, a Self-Adapting MAC Layer that autonomously changes the MAC protocol at
runtime. SAML comprises a learning-based MAC Selection Engine and the Reconfigurable
MAC Architecture (RMA). We have realized SAML on Android-based mobile phones and
TinyOS-based sensors. Experimental results and real-world case studies show that SAML
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can select optimal MAC protocols to meet current application demands and switches MAC
protocols online in an efficient and reliable fashion.
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Chapter 6

Experimental Study of Industrial
Wireless Sensor and Actuator Networks

6.1 Introduction

Process control and automation are crucial for process industries such as oil refineries, chemi-
cal plants, and factories. Today’s industry mainly relies on wired networks (e.g., HART [46])
to monitor and control their production processes. Cables are used for connecting sensors
and forwarding sensor readings to a control room where a controller sends commands to actu-
ators. However, these wired systems have significant drawbacks. It is very costly to deploy
and maintain such wired systems, since numerous cables have to be installed and main-
tained, which often requires laying cables underground. This severely complicates effort to
reconfigure systems to accommodate new production process requirements.

WSAN technology is appealing to process control and automation applications because it
does not require any wired infrastructure. WSANs can be used to easily and inexpensively
retrofit existing industrial facilities without the need to run dedicated cabling for communi-
cation and power. IEEE 802.15.4 based WSANs are designed to operate at a low data rate
and can be inexpensively manufactured, making them a good fit for industrial automation
applications where energy consumption and costs are often important.

However, industrial WSANs pose unique challenges due to their critical demands on reliable
and real-time communication. Violation of these reliability and real-time requirements may
result in plant shutdowns, safety hazard, or economic/environmental impacts. To meet
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the stringent requirements on reliability and predictable real-time performance, industrial
WSAN standards such as WirelessHART [122] made a set of unique network design choices.

∙ The network should support both source routing and reliable graph routing: the source
routing provides a single route for each data flow, whereas the graph routing provides
multiple redundant routes based on a routing graph.

∙ The network should also adopt a multi-channel Time Division Multiple Access (TDMA),
employing both dedicated and shared time slots, at the MAC layer on top of the IEEE
802.15.4 physical layer. Only one transmission is scheduled in a dedicated slot, whereas
multiple transmissions can share a same shared slot. The packet transmission occurs
immediately in a dedicated slot, while a CSMA/CA scheme is used for transmissions
in a shared slot.

Recently, there has been increasing interest in developing new network algorithms and anal-
ysis to support industrial applications. However, there is a lack of academic experimental
testbeds for validating and evaluating network research on industrial WSANs. Without suf-
ficient experimental evaluation, industry consequently has shown a marked reluctance to
embrace new solutions.

In this chapter, we present an experimental testbed that we have developed for studying
and evaluating WSAN protocols. While a multitude of testbeds exist for studying sensor
networks, our testbed is unique in that it supports a suite of key networking mechanisms
specific to industrial WSANs and a set of end-user tools for managing wireless experiments.
We then present a series of empirical studies on WSAN protocol designs including multi-
channel TDMA and shared slots at the MAC layer and reliable graph routing. This study
leads to a list of insights on the development of resilient industrial WSANs:

∙ Source routing can cause poor network reliability even with retransmissions due to sig-
nificant burstiness of transmission failures. In contrast, graph routing is more resilient
to interference and its backup routes can be heavily used in noisy environments at the
cost of increased latency and energy consumption.
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∙ Channel hopping between transmissions can effectively reduce the burstiness of trans-
mission failures; hopping to far away channels can reduce burstiness further by avoiding
using strongly correlated adjacent channels in consecutive transmissions.

∙ Judicious allocation of multiple transmissions in a shared slot can effectively improve
network capacity without significantly impacting reliability.

The rest of the chapter is organized as follows. Section 6.3 introduces the characteristics
of industrial WSANs. Section 6.4 presents the hardware and software architecture of our
experimental testbed. Section 6.5 describes our empirical study. Section 6.2 reviews related
work and Section 6.6 concludes the chapter.

6.2 Related Works

In recent years, there has been increasing interest in studying industrial WSANs regarding
network algorithms and analysis. Zhang et al. [130] focused on the design of a link schedul-
ing and channel assignment algorithm for a simplified linear network model, while Soldati et
al. [113] studied the same problem for tree network models. Rao et al. [92] studied the trade-
off between energy consumption and network performance. Franchino et al. [37] proposed
a real-time energy-aware MAC layer protocol. Han et al. [45] presented a graph routing
algorithm. Saifullah et al. presented a series of theoretical results on real-time transmission
scheduling [98,100], rate selection for wireless control [96], and delay analysis [99,123]. Real-
time transmission scheduling algorithms have also been studied in the context of wireless
sensor networks (WSNs) [11,29,59,84,97]. All these previous works are based on theoretical
analysis and simulation studies, since there is a lack of academic experimental testbeds for
validating and evaluating network research on industrial WSANs. Without sufficient exper-
imental evaluation, industry consequently has shown a marked reluctance to embrace new
solutions. In this chapter, we present an experimental testbed that we have developed for
studying and evaluating WSAN protocols. While a multitude of testbeds exist for study-
ing sensor networks, our testbed is unique in that it supports a suite of key networking
mechanisms specific to industrial WSANs and a set of end-user tools for managing wireless
experiments.
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Industrial WSANs adopt a multi-channel TDMA at the MAC layer, which requires the
time synchronization across the entire network. In recent years, there has been increas-
ing interest in developing time synchronization methods for low-power wireless networks.
Maroti et al. [76] proposed a time synchronization protocol (FTSP) that floods the time
stamps periodically to synchronize the clocks of wireless devices. Rowe et al. designed a
time-synchronized link protocol [95] and further proposed a synchronization approach using
electromagnetic energy radiating from AC power lines [94]. Buevich et al. [23] developed an
external hardware-based clock tuning circuit that can be used to improve synchronization
and significantly reduce clock drift over long periods of time without waking up the host
microprocessor. In our work, we used the FTSP as an example to serve as the time syn-
chronization protocol since the focus of this chapter is studying industrial WSANs protocols
instead of evaluating various time synchronization approaches.

Recently, O’donovan et al. [13] developed a GINSENG system which uses wireless sensor
networks to support mission-critical applications in industrial environments and shared their
valuable experiences during real-world deployments. In contrast to this work, our work
focuses on studying the impact of various protocols, such as channel hopping, graph routing,
and channel sharing, on the network performance.

6.3 Characteristics of Industrial WSANs

To meet the stringent requirements on reliability and predictable real-time performance,
industrial WSAN standards such as WirelessHART [122] made a set of unique network
design choices that distinguish industrial WSANs from traditional WSNs designed for best
effort services. In particular, we focus on several key network mechanisms supported by
WirelessHART [122], a major industrial wireless standard widely used in process industries
today.

A typical industrial WSAN consists of a gateway, multiple access points, and a set of field
devices (sensors and actuators). The access points and field devices are equipped with
half-duplex omnidirectional radio transceivers (compatible with the IEEE 802.15.4 physical
layer [57]) and form a wireless mesh network. The access points are connected with the

123



www.manaraa.com

Figure 6.1: An example of graph routing.

gateway through wired links and serve as bridges between the gateway and wireless field
devices.

Industrial WSANs adopt a centralized network management architecture that enhances the
predictability and visibility of network operations at the cost of scalability. The network
manager, a software module running on the gateway, is responsible for managing the wireless
network. The network manager collects the network topology information from the devices,
determines the routes between the network manager and all devices and the transmission
schedule of the network, and then disseminates the routes and schedule to all devices.

Industrial WSANs support both source routing and reliable graph routing. Source routing
provides a single route for each data flow, whereas graph routing firstly generates a reliable
graph in which each device should have at least two neighbors to which they may send
packets and then provide multiple redundant routes based on the graph. Figure 6.1 shows
an example. To send a packet to access points, Device A may transmit it to Device B and
Device C. From those devices, the packet may take several alternate routes to reach the
access points. Compared to source routing, graph routing is designed to enhance network
reliability through routing diversity and redundancy.

Industrial WSANs adopt a multi-channel TDMA at the MAC layer. Compared to CSMA/CA,
TDMA can provide predictable packet latency which makes it attractive for real-time com-
munication. All devices’ clocks are synchronized and time is divided into 10 ms slots classified
into dedicated and shared slots. In a dedicated slot, only one sender is allowed to transmit
and the transmission occurs immediately after radio is ready in the beginning of the slot. In
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Figure 6.2: Four-tier hardware architecture that consists of field devices, microservers, a
server, and clients.

a shared slot, multiple sensors can attempt to transmit and these senders contend for the
channel using CSMA/CA. To enhance network capacity and combat interference, industrial
WSANs can use up to 16 channels operating in 2.4 GHz ISM band, which are specified in
IEEE 802.15.4 standard, and each device switches channel in every slot. Specifically, after
transmitting a packet on the channel x in the time slot k, a device can hop to the channel
corresponding to logical channel (x+1)%m, where m is the number of available channels, for
the next transmission in the time slot k+ 1. Channel blacklisting is an optional feature that
allows the network operator to restrict the channel hopping of field devices network-wide
to selected channels in the wireless band. In each dedicated time slot, the total number of
concurrent transmissions cannot exceed the number of available channels.
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Figure 6.3: Deployment of the field devices on the fifth floor of Bryan Hall and Jolley Hall
at Washington University in St. Louis.

6.4 Testbed Architecture

We have implemented the routing and MAC layer protocols in a physical WSAN testbed
located in Bryan Hall and Jolley Hall at Washington University in St. Louis. Figure 6.2 illus-
trates the four-tier hardware architecture that consists of field devices (Tier-1), microservers
(Tier-2), a server (Tier-3), and clients (Tier-4).

1. Field devices. The field devices in the testbed are TelosB motes [30], a widely used
wireless embedded platform [30] integrating a TI MSP430 microcontroller, a TI CC2420
radio compatible with the IEEE 802.15.4 standard. Figure 6.3 shows the deployment
of the field devices on the fifth floor of Bryan Hall and Jolley Hall [125]. A subset of
the field devices can be designated as access points in an experiment. The field devices
and access points form a multihop wireless mesh network running WSAN protocols.

2. Microservers. A key capability of our testbed is a wired backplane network that can
be used for managing wireless experiments and measurements without interfering with
wireless communication. The backplane network consists of USB cables and hubs
connecting the field devices and microservers which are in turn connected to a server
through Ethernet. The microservers are Linksys NSLU2 microservers running Linux.
Microservers are responsible for forwarding network management traffic between the
field devices and the server.

126



www.manaraa.com

Figure 6.4: Software architecture for the testbed.

3. Server. The server runs network management processes, gathers statistics on network
behavior, and provides information to system users. The server also serves as a gateway
and runs the network manager of the WSAN.

4. Clients. The clients are regular computers used by users to manage their wireless
experiments and collect data from the experiments through the server and the backbone
network.

We have developed a software architecture for the testbed, which consists of a network
manager running on the server, a protocol stack running on the field devices, and a set
of experiment management tools that are distributed across the server and field devices.
Figure 6.4 illustrates the software architecture.

1. Network manager. The network manager runs on the server and implements a route
generator and a schedule generator. The route generator is responsible for generating
source routes or graph routes based on the collected network topology. We use Di-
jkstra’s shortest-path algorithm to generate routes for source routing and follow the
algorithm proposed in [45] to generate the reliable graphs. The schedule generator uses
rate monotonic scheduling algorithm [74] to generate transmission schedules.
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Figure 6.5: Time diagram of RT-MAC.

2. Protocol stack. The protocol stack runs on the field devices and consists of a multi-
channel TDMA MAC for dedicated slots, a CSMA/CA MAC for shared slots, and a
forwarding layer that forwards packets based on the routes generated by the network
manager.

3. Experiment management tools. The tools include a configuration manager, an exper-
iment controller, and a network measurement tool, which are used to initialize and
manage the wireless experiments, gather statistics on network behavior, and collect
performance results.

6.4.1 Protocol Stack

Our protocol stack adopts the CC2420x radio driver as the radio core, which provides an
open-source implementation of IEEE 802.15.4 physical layer in TinyOS [4] operating over
TI CC2420 radios. CC2420x radio stack takes care of the low-level details of transmitting
and receiving packets through the radio hardware.

On top of the radio core, we have developed a multi-channel TDMA MAC protocol-RT-MAC
that captures the key features of the MAC protocol used by industrial WSANs. RT-MAC
divides the time into 10 ms slots and runs a Sync period (1.5 s) in every 1650 slots, as shown
in Figure 6.7. Flooding Time Synchronization Protocol (FTSP) [76] is executed during Sync
periods to synchronize the clocks of all wireless devices over the entire network. RT-MAC
configures the FTSP to flood three time stamps with 500 ms intervals over the network to
adjust the local clocks of all devices to a global time source 14. The period following the
Sync period consists of recurring superframes (a series of time slots) and idle intervals. Each
slot in superframes begins by allowing a time interval to set the radio to the desired channel.

14Our micro-benchmark experiment shows that a FTSP’s time stamp packet can finish the traversing of
the entire network within 500 ms.
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Figure 6.6: Number of field devices with time difference less than 2ms.

We reserve 2 ms in the beginning of each slot to accommodate the channel switching delay
and clock synchronization error, since our micro-benchmark experiments show that more
than 95% of field devices over the entire network can be synchronized with errors less than
2 ms 15, as shown in Figure 6.8. RT-MAC supports both dedicated and shared slots. In a
dedicated slot, only one sender is allowed to transmit and the packet transmission occurs
immediately after radio is ready in the beginning of the slot. In a shared slot, more than one
sender can attempt to transmit and these senders contend for the channel using CSMA/CA.

6.4.2 Experiment Management Tools

We have developed three experiment management tools to manage the wireless experiments,
including a network measurement tool, a configuration manager, and an experiment con-
troller. The network measurement tool runs on the field devices, while the configuration
manager and experiment controller run on the server.

The network measurement tool on a field device measures the link quality in term of packet
reception ratio (PRR). The tool coordinates field devices take turns to broadcast packets

15The rest of field devices may disconnect from the network due to larger clock synchronization errors, but
they will be reconnected in the next Sync period after they catch the new time stamps generated by FTSP.
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over each of the 16 channels and controls the rest of field devices to measure the PRR.
Specifically, the transmitter sent a batch of 250 consecutive packets to the broadcast address
using a single wireless channel, then proceeded to the next channel in a round robin fashion.

The configuration manager is used for initializing the experiments and installing the TinyOS
image to field devices. The experiment controller is responsible for coordinating with the
network measurement tool to measure the topology of the network, gathering performance
data on network behavior, and saving the data into a database. The performance data
collected by the experiment controller includes both end-to-end performance (e.g., packet
delivery ratio (PDR) and latency of each data flow) and link performance (e.g., PRR of each
link), as well as timestamps of transmission and reception of each packet and radio activities
of each field device.

6.4.3 Experimental Process

An experiment on the testbed follows the following steps (as illustrated in Figure 6.4). All
the network management traffic involved in the process occurs over the wired backplane
network.

∙ Step 0: The configuration manager initiates the experiment controller and installs the
TinyOS image to field devices.

∙ Step 1 and 2: The experiment controller issues a command to the network measurement
tool running on all field devices to measure the network topology and then gathers the
link quality between field devices.

∙ Step 3: The experiment controller saves the measured link quality into a topology
profile.

∙ Step 4: The experiment controller initiates the network manager.

∙ Step 5 and 6: The route generator reads the topology profile, generates the routes, and
then initiates the schedule generator.
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Figure 6.7: Time diagram of RT-MAC.

Figure 6.8: Number of field devices with time difference less than 2ms.

∙ Step 7: The schedule generator generates the transmission schedule based on the routes
and then saves it into a schedule profile.

∙ Step 8 and 9: The experiment controller reads the schedule profile and then forwards
the schedule to field devices.

∙ Step 10 and 11: The experiment controller gathers statistics on network behavior
during experiments and saves results into the database.

6.4.4 Protocol Stack

Our protocol stack adopts the CC2420x radio driver as the radio core, which provides an
open-source implementation of IEEE 802.15.4 physical layer in TinyOS [4] operating over
TI CC2420 radios. CC2420x radio stack takes care of the low-level details of transmitting
and receiving packets through the radio hardware.
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On top of the radio core, we have developed a multi-channel TDMA MAC protocol-RT-MAC
that captures the key features of the MAC protocol used by industrial WSANs. RT-MAC
divides the time into 10 ms slots and runs a Sync period (1.5 s) in every 1650 slots, as shown
in Figure 6.7. Flooding Time Synchronization Protocol (FTSP) [76] is executed during Sync
periods to synchronize the clocks of all wireless devices over the entire network. RT-MAC
configures the FTSP to flood three time stamps with 500 ms intervals over the network to
adjust the local clocks of all devices to a global time source 16. The period following the
Sync period consists of recurring superframes (a series of time slots) and idle intervals. Each
slot in superframes begins by allowing a time interval to set the radio to the desired channel.
We reserve 2 ms in the beginning of each slot to accommodate the channel switching delay
and clock synchronization error, since our micro-benchmark experiments show that more
than 95% of field devices over the entire network can be synchronized with errors less than
2 ms 17, as shown in Figure 6.8. RT-MAC supports both dedicated and shared slots. In a
dedicated slot, only one sender is allowed to transmit and the packet transmission occurs
immediately after radio is ready in the beginning of the slot. In a shared slot, more than one
sender can attempt to transmit and these senders contend for the channel using CSMA/CA.

6.4.5 Experiment Management Tools

We have developed three experiment management tools to manage the wireless experiments,
including a network measurement tool, a configuration manager, and an experiment con-
troller. The network measurement tool runs on the field devices, while the configuration
manager and experiment controller run on the server.

The network measurement tool on a field device measures the link quality in term of packet
reception ratio (PRR). The tool coordinates field devices take turns to broadcast packets
over each of the 16 channels and controls the rest of field devices to measure the PRR.
Specifically, the transmitter sent a batch of 250 consecutive packets to the broadcast address
using a single wireless channel, then proceeded to the next channel in a round robin fashion.

16Our micro-benchmark experiment shows that a FTSP’s time stamp packet can finish the traversing of
the entire network within 500 ms.

17The rest of field devices may disconnect from the network due to larger clock synchronization errors, but
they will be reconnected in the next Sync period after they catch the new time stamps generated by FTSP.
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The configuration manager is used for initializing the experiments and installing the TinyOS
image to field devices. The experiment controller is responsible for coordinating with the
network measurement tool to measure the topology of the network, gathering performance
data on network behavior, and saving the data into a database. The performance data
collected by the experiment controller includes both end-to-end performance (e.g., packet
delivery ratio (PDR) and latency of each data flow) and link performance (e.g., PRR of each
link), as well as timestamps of transmission and reception of each packet and radio activities
of each field device.

6.4.6 Experimental Process

An experiment on the testbed follows the following steps (as illustrated in Figure 6.4). All
the network management traffic involved in the process occurs over the wired backplane
network.

∙ Step 0: The configuration manager initiates the experiment controller and installs the
TinyOS image to field devices.

∙ Step 1 and 2: The experiment controller issues a command to the network measurement
tool running on all field devices to measure the network topology and then gathers the
link quality between field devices.

∙ Step 3: The experiment controller saves the measured link quality into a topology
profile.

∙ Step 4: The experiment controller initiates the network manager.

∙ Step 5 and 6: The route generator reads the topology profile, generates the routes, and
then initiates the schedule generator.

∙ Step 7: The schedule generator generates the transmission schedule based on the routes
and then saves it into a schedule profile.

∙ Step 8 and 9: The experiment controller reads the schedule profile and then forwards
the schedule to field devices.
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Figure 6.9: Locations of sensors, actuators, and access points.

∙ Step 10 and 11: The experiment controller gathers statistics on network behavior
during experiments and saves results into the database.

6.5 Empirical Study

In this study, we first investigate the tradeoff among reliability, latency, and energy con-
sumption under the two alternative routing approaches in clean, noisy, and stress testing
environments. We then perform a link study to quantify the burstiness of transmission
failures on a same channel. We also study the impact of channel hopping on reducing the
burstiness of transmission failures. Finally, we conduct a controlled experiment to explore
the potential of channel sharing for improving network capacity.

6.5.1 Network Configuration

Figure 6.9 shows one of our network configurations. The bigger yellow spheres denote the
access points which communicate with the network manager running on the server through
the wired backbone network. The other spheres and squares denote the field devices. The
source and destination of a flow is represented as a circle and a square, respectively. The
pair of source and destination of a same flow uses the same color. We use 8 flows in our
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Flow ID Sensor ID Actuator ID Period (ms)
1 107 199 100
2 112 196 200
3 116 195 400
4 124 193 800
5 127 192 1600
6 130 191 3200
7 132 189 6400
8 133 188 12800

Table 6.1: The sensor IDs, actuator IDs, and periods in 8 flows in one of our network
configurations.

experiments. The period of each flow (shown in Table 6.1) is picked up from the range of
20∼7 seconds, which are practical periods used in process industries. Following the practice of
industrial deployment, the routing algorithms only consider reliable links with PRR higher
than 80%. We run our experiments long enough such that each flow can deliver at least
500 packets. We also repeat our experiments with another two network configurations by
varying the location of access points, sources, and destinations.

6.5.2 Tradeoff between Two Routing Strategies

We conduct a comparative empirical study of the two alternative routing approaches adopted
by industrial WSANs, namely source routing and graph routing. Specifically, we investigate
the tradeoff among reliability, latency, and energy consumption under the different routing
approaches. We run two sets of experiments once with the source routes and once with the
graph routing configuration. We repeat the experiments under a clean environment, a noisy
environment, and a stress testing environments

1. Clean: we blacklist channels overlapping with our campus Wi-Fi network and run the
experiments on other 802.15.4 channels.

2. Noisy: we run the experiments by configuring the network to use channels 16 to 19,
which overlap with our campus Wi-Fi network.
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Figure 6.10: Box plot of the PDR of source routing and graph routing in the clean, noisy,
and stress testing environments. Central mark in box indicates median; bottom and top
of box represent the 25th percentile (q1) and 75th percentile (q2); crosses indicate outliers
(x > q2 + 1.5 ⋅ (q2− q1) or x < q1− 1.5 ⋅ (q2− q1)); whiskers indicate range excluding outliers.
Vertical lines delineate three different network configurations.

3. Stress testing: we run the experiments with channels 11 to 14 under controlled inter-
ference, in the form of a laptop and an access point generating 1 Mbps UDP traffic
over the Wi-Fi channel 1, which overlaps with 802.15.4 channels 11 to 14.

We use the PDR to measure reliability. The PDR of a flow is defined as the percentage of
packets that are successfully delivered to their destination. Figure 6.10 compares the network
reliability under source routing and graph routing in the two environments. As shown in
Figure 6.10, under the first network configuration, graph routing achieves an average 1.0%
(from 0.99 to 1.0), 15.9% (from 0.82 to 0.95), and 21.4% (from 0.70 to 0.85) increases
in median PDR over source routing in the clean, noisy, and stress testing environments,
respectively. Graph routing shows similar improvement over source routing under the other
two network configurations. More importantly, graph routing shows an improvement in
the worst PDR and achieves a smaller variation of PDR over source routing, which can be a
significant advantage in industrial applications that demand predictable performance. In the
clean environment, graph routing achieves a 4.8% improvement over source routing in term
of the worst reliability among the flows. Graph routing shows an even greater improvement
(35.5%) in the noisy environment and further improves the min PDR by 63.5% under stress
testing. This result shows that graph routing is indeed more resilient to interference due to
route diversity. However, as shown in Figure 6.11, the route diversity incurs a cost in term of
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Figure 6.11: Box plot of the normalized latency of source routing and graph routing of each
flow under graph routing over that under source routing. Central mark in box indicates
median; bottom and top of box represent the 25th percentile (q1) and 75th percentile (q2);
crosses indicate outliers (x > q2 + 1.5 ⋅ (q2− q1) or x < q1− 1.5 ⋅ (q2− q1)); whiskers indicate
range excluding outliers. Vertical lines delineate three different network configurations.

latency, with graph routing achieving an average of 1.8× (ranging from 1.0 to 2.2) increase
in the end-to-end latency.

To estimate the energy consumption, we have measured the time duration and energy con-
sumption of different radio activities by connecting the probes of a power meter from Mon-
soon Solutions [80] to the voltage pins of a TelosB mote. As Figure 6.12 shows, the mote
takes T2 − T1 = 1.0 ms and consumes 43.6�J of energy (43.6 mW of power on average) to
turn on its radio, while it spends T3 − T2 = 0.6 ms and consumes 40.6�J of energy (66.5

mW of power on average) for a Clear Channel Assessment (CCA) check. The packet trans-
mission process T4 − T3 takes 1.8 ms and consumes 136.8�J of energy (76.0 mW of power
on average). The mote takes T5− T4 = 0.8 ms and consumes 56.0�J of energy (70.0 mW of
power on average) when waiting for an ACK, while it spends T6−T5 = 0.7 ms and consumes
29.8�J of energy (42.6 mW of power on average) to turn off its radio. With timestamps of
radio activities, we can accurately estimate the energy consumption of all field devices. As
Figure 6.13 shows, graph routing consumes an average of 2.3× more energy (ranging from
1.5 to 3.1) over source routing.

Observation 1: Graph routing leads to significant improvement over source routing in
term of worst-case reliability, at the cost of significant longer latency and higher energy
consumption.
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Figure 6.12: The mote turns on the radio (T1–T2), performs a CCA check(T2–T3), transmits
a packet(T3–T4), waits for the ACK (T4–T5), and then turns off the radio (T5–T6).

Figure 6.13: Box plot of the normalized energy consumption of source routing and graph
routing of each flow under graph routing over that under source routing. Central mark in
box indicates median; bottom and top of box represent the 25th percentile (q1) and 75th
percentile (q2); crosses indicate outliers (x > q2 + 1.5 ⋅ (q2 − q1) or x < q1 − 1.5 ⋅ (q2 − q1));
whiskers indicate range excluding outliers. Vertical lines delineate three different network
configurations.
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6.5.3 Burstiness of Transmission Failures on a Same Channel

To understand the transmission failures further, we perform a detailed measurement study
of the links that suffered from severe packet losses during our previous experiments. In this
controlled experiment, the senders of these links transmit a batch of 1000 packets over their
interfered channels in the noisy environment. The recipients record the success or failure of
each packet and report to the server.

From the experiment, we found that transmissions following a failed one over the same link
have a high probability of failures, exhibiting significant burstiness in transmission failures
over a same link. It is worth noting that choosing the number of transmissions for each packet
must consider the balance between network reliability and efficiency, reserving a large number
of retransmissions in the schedule can lead to significant waste in network capacity when the
retransmissions are not needed. As a result, industrial WSANs usually can only afford two or
three transmissions per packet over a same link. Figure 6.14 illustrates this problem with the
Cumulative Distribution Function (CDF) of consecutive packet drops for five least reliable
links. Each data point (x, y) on the CDF curve represents y% of transmission failures has
less than x consecutive packet drops. On the most bursty link (link 3), 73.1% of transmission
failures are part of at least two consecutive failures and 59.7% of transmission failures are
part of at least three consecutive failures. On the remaining four links, 44.8% of transmission
failures are part of at least two consecutive failures. Moreover, bursts of 56 consecutive packet
drops were observed in our experiment. This result shows that consecutive retransmissions
over a same link are insufficient in alleviating transmission failures due to the significant
burstiness of transmission failures. A possible cause of the burstiness is that the other wireless
devices such as Wi-Fi access points, Bluetooth peripherals, and cordless phones that share
the unlicensed 2.4 GHz ISM band cannot sense the ongoing 802.15.4 transmissions which
can be easily corrupted due to their low transmission power and long air time. With much
shorter packet air time and inter-packet intervals, a backlogged interferer can potentially
corrupt the vast majority of consecutive 802.15.4 packets.

Observation 2: Consecutive retransmissions over a same link are insufficient in alleviating
transmission failures due to the significant burstiness of packet losses.
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Figure 6.14: CDF of number of consecutive drops (single channel).

Figure 6.15: CDF of number of consecutive drops (sequential channel hopping).

Figure 6.16: CDF of number of consecutive drops (hopping to four-channel-away channels).
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6.5.4 Impact of Channel Hopping on Burstiness of Transmission

Failures

A key mechanism adopted by industrial WSANs is spectrum diversity through channel hop-
ping. Given the burstiness of transmission failures on a same channel observed in the last
set of experiments, we now investigate the impact of channel hopping on the burstiness of
transmission failures. Specifically, we explore whether the sequential channel hopping ap-
proach suggested by the WirelessHART standard [122] is able to eliminate the burstiness
of transmission failures. In this set of experiments, instead of staying on a same channel, a
sender hops to the next channel if it observes a transmission failure on the current one. As
Figure 6.15 shows, the burstiness of transmission failures on link 2, 4, and 5 is reduced sig-
nificantly. Only fewer than 4.6% of transmission failures are part of at least two consecutive
failures. However, the burstiness still exists on the remaining two links. On the most bursty
link (link 3), 61.9% of transmission failures are part of at least two consecutive failures and
48.1% of transmission failures are part of at least three consecutive failures. This result
suggests channel hopping is an effective mechanism to mitigate the burstiness of transmis-
sion failures, but it cannot eliminate the burstiness from all links. A practical solution is
to identify the remaining bursty links and selectively allocate more retransmissions to those
links.

Observation 3: Sequential channel hopping can effectively reduce the burstiness of trans-
mission failures but cannot eliminate it from all links.

The reason that sequential channel hopping cannot eliminate the burstiness is that there
can be strong correlations among adjacent channels. To quantify the correlation, we have
studied the effect of channel distance (the absolute difference between channel indices) on the
conditional probability of channel failure (the probability that channel x loses a packet when
channel y also loses a packet) based on the data traces shown in Section 6.5.2. In Figure 6.17,
we plot the probability of simultaneous link failures as a function of channel distance. From
Figure 6.17, we observed that this probability can be as high as 34.8% between neighboring
channels and 20.5% between every other channel, but drops off as channel distance increases
to more than 3. Therefore, we hypothesize that a device can reduce the burstiness in its
transmission failures by hopping to a channel farther away from the current one. We test this
hypothesis by studying whether hopping to four-channel-away channels is able to eliminate
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Figure 6.17: Probability of two channels losing packets simultaneously.

the burstiness through a new set of experiments. As Figure 6.16 shows, the burstiness of
transmission failures is effectively eleiminated on three links. On the remaining two links,
only 5.7% and 9.5% of transmission failures, respectively, are part of two consecutive failures.
Three consecutive failures was never observed. The results confirm that hopping to far away
channels is more effective than sequential channel hopping in reducing the burstiness of
consecutive transmission failures. This suggests an enhancement to the existing sequential
hopping policy often adopted by industrial WSANs.

Observation 4: Hopping to farther away channels is more effective than sequential channel
hopping in reducing the burstiness of transmission failures.

We note that the appropriate channel hopping distance and proper number of transmissions
per packet may vary in different wireless environments. Therefore, network developers may
follow our metric to pursue these two variables in their own wireless environments.

6.5.5 Time Slot Sharing

There exists an inherent tradeoff between network reliability and capacity of a WSAN when
only dedicated slots are used for retransmissions. Scheduling more retransmissions will im-
prove reliability, but may waste slots when the retransmissions are not needed at run time.
To mitigate the impact of retransmissions on network capacity, industrial WSANs introduce
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Figure 6.18: PRR of links scheduled in a shared slot.

a mechanism called “shared slots” to allow multiple links to share a slot for retransmissions.
The senders of a shared slot must contend for the channel using CSMA/CA.

To study the reliability of transmissions in shared slots, we perform a controlled experiment
in which multiple senders contend for the wireless medium. We schedule the senders of two
closest links to transmit 1000 packets over the same channel in a sequence of 1000 slots 18,
then add more and more nearby links 19 to use the shared slots. The recipients record the
success or failure of each packet and report to the server. We repeat this experiment 10
times with three different sets of links located at different places on our testbed.

Figure 6.18 shows the box-plot of the PRR of all links with different number of links in a
shared slot. Two senders sharing a same slot achieves a median PRR of 88.2%, while the
median PRRs reduce to 66.7%, 52.7%, and 46.2% when more senders are added into the
slot.

For comparison, we also calculate the theoretical time to deliver multiple packets. Specifi-
cally, the time is T on +T cca

1 +T tx
1 +T ack

1 + Σn
i=2(T

backoff
i +T tx

i +T ack
i ) +T off +T guard, where

T on is the time that the radio is turned on and the channel is configured (1.0 ms); T cca is
18We intentionally added time gaps between transmissions to avoid the impact of burstiness of transmission

failures mentioned in Section 6.5.3
19We choose nearby links in our study, since we are interested in the slot duration sharing and capture

effect between adjacent links instead of the traditional spatial reuse approaches (allocating far away links to
reuse a same channel), which have been well studied in the literature.
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Figure 6.19: Normalized latency using shared slots relative to that using dedicated slots.

the time for a CCA check (0.6 ms); T tx is packet air time (0.35 ms ∼ 4.3 ms); T ack is the
waiting time for ACK (0.8 ms); T backoff is the random backoff time before devices attempt
to access the wireless medium; T off is the time that the radio is turned off (0.7 ms); and
T guard is the guard time for time synchronization (2.0 ms). In our experiments, the air time
of packets is around 1.8 ms. Therefore, two packets can be delivered in a 10 ms slot in most
cases when the random generated T backoff is smaller than 0.5 ms (T backoff ∈ [0, 0.64]ms).
To take advantage of slot duration, network developers may follow the above calculation to
determine how many links can be safely assigned to a shared slot.

However, as shown in Figure 6.18, the minimum PRR is 41.6% even when we added more
senders into the share time slots. According to the timestamps collected during the measure-
ment, data packets were transmitted simultaneously when transmitters cannot detect each
others’ signals and hence do not defer their transmissions even when there exist ongoing
transmissions. However, multiple simultaneous transmissions can be delivered successfully,
as a packet can be successfully decoded in spite of a collision if the signal-to-interference-
plus-noise-ratio is above a certain threshold [107, 114]. Figure 6.19 shows the normalized
latency using shared slots relative to that using dedicated slots to sequentially schedule all
the transmissions. The normalized latency of delivered packets reduces from 55.6% to 22.2%
when we added more senders into the share time slots, while increasing the number of links
in a shared slot consequently has a 5.5% increase in normalized energy consumption (from
1.09 to 1.16) since the transmitters have to leave the radio on longer to contend for the
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Figure 6.20: Normalized energy consumption using shared slots relative to that using dedi-
cated slots

channel. This observation suggests multiple transmissions may be scheduled in a shared slot
to exploit the capture effect [121], whereby a packet with the stronger signal strength can
be received in spite of a collision, that allows concurrent transmissions.

Observation 6: Multiple transmissions can be scheduled in a shared slot to take advantage
of slot duration and the capture effect allowing concurrent transmissions.

6.6 Conclusion

Wireless technology offers a promising platform for process control and automation applica-
tions since it does not require any wired infrastructure. WSANs can be used to easily and
inexpensively retrofit existing industrial facilities without the need to run dedicated cabling
for communication and power. However, industrial WSANs pose unique challenges due to
their critical demands on reliable and real-time communication. To enable the validation
and evaluation of network research on industrial WSANs, we developed an experimental
testbed by realizing the key networking mechanisms specific to industrial WSANs and a
set of end-user tools for users to manage wireless experiments. We then performed a series
of empirical studies on WSAN protocol designs such as multi-channel TDMA and shared
slots at the MAC layer and reliable graph routing, looking both at end-to-end and link
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performance. The observations made in our study highlight the significant challenges that
face industrial applications for achieving reliable wireless communication. Nevertheless, our
observations also suggest that these challenges may be tamed through the judicious use of
channel diversity and channel sharing. Specifically, we have distilled our observations into a
list of insights which could greatly impact the development of resilient industrial WSANs:

∙ Source routing can cause poor network reliability even with retransmissions due to sig-
nificant burstiness of transmission failures. In contrast, graph routing is more resilient
to interference and its backup routes can be heavily used in noisy environments at the
cost of increased latency and energy consumption.

∙ Channel hopping between transmissions can effectively reduce the burstiness of trans-
mission failures; hopping to far away channels can reduce burstiness further by avoiding
using strongly correlated adjacent channels in consecutive transmissions.

∙ Judicious allocation of multiple transmissions in a shared slot can effectively improve
network capacity without significantly impacting reliability.
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Chapter 7

Conclusion

In recent years, there has been growing interest in deploying various wireless sensing appli-
cations in real-world environments. For example, smart energy systems provide fine-grained
metering and control of home appliances in residential settings. Similarly, assisted living ap-
plications such as vital sign monitoring and fall detection leverage wireless sensors to provide
continuous health monitoring in homes. WSNs offer a promising platform for these applica-
tions because they do not require a fixed wired infrastructure. However, real deployments
of WSNs pose significant challenges due to their low-power radios and uncontrolled ambient
environments. Our empirical study in over 15 real-world apartments showed that low-power
WSNs based on the IEEE 802.15.4 standard are highly susceptible to external interference
beyond user control, such as Wi-Fi access points, Bluetooth peripherals, cordless phones,
and numerous other devices prevalent in residential environments that share the unlicensed
2.4 GHz ISM band with IEEE 802.15.4 radios.

To address these real-world challenges, we developed two practical wireless network pro-
tocols including the ARCH and the AEDP. ARCH enhances network reliability through
channel diversity: devices opportunistically change their radio’s frequency in order to avoid
adverse channel conditions such as interference and environmental noise; AEDP reduces false
wakeups in a noisy wireless environment by dynamically adjusting the wakeup threshold of
low-power radios.

Another major trend in WSNs is the convergence with smart phones. To deal with the dy-
namic wireless conditions and varying application requirements of mobile users, we developed
the SAML to support adaptive communication between smart phones and wireless sensors.
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SAML dynamically selects and switches MAC protocols to changes in ambient conditions
and application requirements.

Compared with the residential and personal wireless systems, industrial applications such
as process automation pose unique challenges due to their critical demands on reliability
and real-time performance. We developed an experimental testbed by realizing key network
mechanisms of industrial WSANs including multi-channel TDMA with shared slots at the
MAC layer and reliable graph routing. We then performed an in-depth empirical study
on the reliability, latency, and energy consumption of variant solutions under clean, noisy,
and stress testing conditions, providing key insights for meeting the reliable and real-time
constraints of industrial applications. Our study shows that graph routing is more resilient
to interference and its backup routes may be heavily used in noisy environments, which
demonstrate the necessity of path diversity for reliable WSANs. Our study also suggests
that combining channel diversity with retransmission may effectively reduce the burstiness
of transmission failures and judicious allocation of multiple transmissions in a shared slot
can effectively improve network capacity without significantly impacting reliability.
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